
AZ64 Encoding

Max Ganz II @ Redshift Observatory

28th February 2022

https://www.redshift-observatory.ch

Abstract

The AZ64 encoding is the Gorilla compression method from Facebook (2015),
but with the 1-bit encoding for repeating values removed and replaced by no
less than three distinct runlength-like compression methods, all of which seem
completely crazy. With repeating values, when the number of repetitions is 2 to
63, no runlength encoding occurs and the full Gorilla encoding is used for each
row, a lost compression opportunity; when the number of repeating values is a
positive integer power of 2 between (inclusive both ends) 64 and 16384, each
group of repeating values is encoded into a “storage unit” which is between 5 and
33 (inclusive both ends) bytes depending on data type which stores a copy of the
value and a 15 bit counter, allowing for billions of rows per block, where I think
(but have not yet investigated) materialization is block based and so needing
to materialize any row in that block means all rows must be materialized; and,
finally, when the number of repetitions is 65 or more, but not a positive integer
power of 2, the number of rows stored per block varies depending on the value
being encoded, the number of repetitions and the bit-pattern of the number of
repetitions (!), as Gorilla-like encoding is being used on that bit-pattern, such
that increasing the number of repetitions often decreases the number of rows
stored in a block (as the bit-pattern of the number of repetitions has become
less favourable to Gorilla encoding).

Contents

Introduction 2

Test Method 3

Results 4
dc2.large, 2 nodes (1.0.35649) . 4

Method #1 . 4
Method #2 . 8
Method #3 . 10
Method #4 . 11

Discussion 15
Overview . 16
Encoding Method #1 : Gorilla Encoding 18

Gorilla Encoding in Redshift . 22
Encoding Method #2 : Gorilla/Runlength Encoding with 63 or Fewer

Repetitions . 25
Encoding Method #3 : Runlength Encoding with Positive Integer

Power of 2 Repetitions . 26
Encoding Method #4 : Gorilla/Runlength Encoding with 65 or More

Repetitions . 28

Conclusions 30

Revision History 33
v1 . 33
v2 . 33
v3 . 33
v4 . 33
v5 . 33

Appendix A : Raw Data Dump 34

Redshift Observatory Slack 40

1

Introduction

Redshift is a column-store relational database, which means that each column
in a table is stored contiguously.

It is often the case that the data in a single column has similar characteristics
- for example, might be all names, or ages, or say integer values within a given
range; in other words, data which is far from randomly distributed across the
value range for the data type of the column.

This provides an opportunity for unusually effective data compression, as well
as an opportunity to blunder terribly, as Redshift offers a range of data com-
pression methods (known in the Redshift documentation as “encodings”), most
of which work spectacularly well with and only with data which expresses the
characteristics necessary for that data compression method, and which often
work spectacularly badly with data lacking those characteristics.

It is then necessary to understand the type of data characteristics suitable for
each of the data compression methods offered by Redshift, as well of course as
the behaviours and limitations of the data compression methods, so the good
choices can be made when selecting data compression for columns.

This document is one in a series, each of which examines one data compression
method offered by Redshift, which here investigates the AZ64 encoding.

2

Test Method

The basic test method used is to create a test table, with a single raw encoded
column, such that all rows are on a single slice, and then populate the test table
with rows, issuing VACUUM between INSERTs, until more than one block has been
filled. This allows us to see how many rows were needed to fill one block, the
first block.

I can then vary exactly what data is being inserted, to try and figure out how
the encoding method is working, by seeing how changing the data affects the
number of rows which fit into the first block.

So, for example, the test might be all rows with the same value, or alternating
rows with two different values, or ascending values, and so on.

3

Results

The results are given here for ease of reference, but they are primarily presented,
piece by piece along with explanation, in the Discussion.

See Appendix A for the Python pprint dump of the results dictionary.

The script used to generated these results in designed for readers to use, and is
available here.

Test duration, excluding server bring-up and shut-down, was 9736 seconds.

dc2.large, 2 nodes (1.0.35649)
Method #1
int2

Datum Value
First value 0
First value (pattern) 0
Second value 1
Second value (pattern) 1
XOR 1
Stored bit pattern 1
Stored length in bits 1
Overhead in bits 0.5
Bits per Block 8388608
Estimated rows per block 5592405.33
Actual rows per block 5591809

Datum Value
First value 51
First value (pattern) 110011
Second value 60
Second value (pattern) 111100
XOR 001111
Stored bit pattern 1111

4

https://www.redshift-observatory.ch/white_papers/downloads/az64_encoding.py

Datum Value
Stored length in bits 4
Overhead in bits 0.5
Bits per Block 8388608
Estimated rows per block 1864135.11
Actual rows per block 1863937

Datum Value
First value -32768
First value (pattern) 1000000000000000
Second value -1
Second value (pattern) 0000000000000001
XOR 0111111111111111
Stored bit pattern 111111111111111
Stored length in bits 15
Overhead in bits 0.5
Bits per Block 8388608
Estimated rows per block 541200.52
Actual rows per block 541121

Datum Value
First value -32768
First value (pattern) 1000000000000000
Second value 0
Second value (pattern) 0000000000000000
XOR 1000000000000000
Stored bit pattern 1
Stored length in bits 1
Overhead in bits 0.5
Bits per Block 8388608
Estimated rows per block 5592405.33
Actual rows per block 5591809

int4

Datum Value
First value 0
First value (pattern) 0
Second value 1
Second value (pattern) 1
XOR 1
Stored bit pattern 1
Stored length in bits 1
Overhead in bits 1.0

5

Datum Value
Bits per Block 8388608
Estimated rows per block 4194304.00
Actual rows per block 4193856

Datum Value
First value 51
First value (pattern) 110011
Second value 60
Second value (pattern) 111100
XOR 001111
Stored bit pattern 1111
Stored length in bits 4
Overhead in bits 1.0
Bits per Block 8388608
Estimated rows per block 1677721.60
Actual rows per block 1677505

Datum Value
First value -2147483648
First value (pattern) 10000000000000000000000000000000
Second value -1
Second value (pattern) 00000000000000000000000000000001
XOR 01111111111111111111111111111111
Stored bit pattern 1111111111111111111111111111111
Stored length in bits 31
Overhead in bits 1.0
Bits per Block 8388608
Estimate rows per block 262144.00
Actual rows per block 262081

Datum Value
First value -2147483648
First value (pattern) 10000000000000000000000000000000
Second value 0
Second value (pattern) 00000000000000000000000000000000
XOR 10000000000000000000000000000000
Stored bit pattern 1
Stored length in bits 1
Overhead in bits 1.0
Bits per Block 8388608
Estimated rows per block 4194304.00
Actual rows per block 4193856

6

int8

Datum Value
First value 0
First value (pattern) 0
Second value 1
Second value (pattern) 1
XOR 1
Stored bit pattern 1
Stored length in bits 1
Overhead in bits 2.0
Bits per Block 8388608
Estimated rows per block 2796202.67
Actual rows per block 2795904

Datum Value
First value 51
First value (pattern) 110011
Second value 60
Second value (pattern) 111100
XOR 001111
Stored bit pattern 1111
Stored length in bits 4
Overhead in bits 2.0
Bits per Block 8388608
Estimated rows per block 1398101.33
Actual rows per block 1397952

Datum Value

First value -9223372036854775808
First value (pattern) 1000
Second value -1
Second value (pattern) 0001
XOR 0111
Stored bit pattern 111
Stored length in bits 63
Overhead in bits 2.0
Bits per Block 8388608
Estimated rows per block 129055.51
Actual rows per block 129025

Datum Value

First value -9223372036854775808
First value (pattern) 1000
Second value 0
Second value (pattern) 00
XOR 1000
Stored bit pattern 1
Stored length in bits 1
Overhead in bits 2.0

7

Datum Value

Bits per Block 8388608
Estimated rows per block 2796202.67
Actual rows per block 2795904

numeric(38,0)

Datum Value
First value 0
First value (pattern) 0
Second value 1
Second value (pattern) 1
XOR 1
Stored bit pattern 1
Stored length in bits 1
Overhead in bits 4.0
Bits per Block 8388608
Estimated rows per block 1677721.60
Actual rows per block 1677504

Datum Value
First value 51
First value (pattern) 110011
Second value 60
Second value (pattern) 111100
XOR 001111
Stored bit pattern 1111
Stored length in bits 4
Overhead in bits 4.0
Bits per Block 8388608
Estimated rows per block 1048576.00
Actual rows per block 1048448

Method #2

Data Type Values # Repetitions Actual Rows per Block
int2 0/1 2 5591810
int2 0/1 3 5591811
int2 0/1 4 5591812
int2 0/1 62 5591842
int2 0/1 63 5591817
int2 0/1 64 13420416
int2 0/1 65 5694016
int2 65/119 2 1524994
int2 65/119 3 1524993

8

Data Type Values # Repetitions Actual Rows per Block
int2 65/119 4 1524996
int2 65/119 62 1525014
int2 65/119 63 1525041
int2 65/119 64 13420416
int2 65/119 65 1567800

Data Type Values # Repetitions Actual Rows per Block
int4 0/1 2 4193856
int4 0/1 3 4193856
int4 0/1 4 4193856
int4 0/1 62 4193856
int4 0/1 63 4193856
int4 0/1 64 7455744
int4 0/1 65 4251072
int4 65/119 2 1397952
int4 65/119 3 1397952
int4 65/119 4 1397952
int4 65/119 62 1397952
int4 65/119 63 1397952
int4 65/119 64 7455744
int4 65/119 65 1433770

Data Type Values # Repetitions Actual Rows per Block
int8 0/1 2 2795904
int8 0/1 3 2795904
int8 0/1 4 2795904
int8 0/1 62 2795904
int8 0/1 63 2795904
int8 0/1 64 3947136
int8 0/1 65 2821248
int8 65/119 2 1198210
int8 65/119 3 1198209
int8 65/119 4 1198212
int8 65/119 62 1198212
int8 65/119 63 1198260
int8 65/119 64 3947136
int8 65/119 65 1224470

Data Type Values # Repetitions Actual Rows per Block
numeric(38,0) 0/1 2 1677504
numeric(38,0) 0/1 3 1677504
numeric(38,0) 0/1 4 1677504

9

Data Type Values # Repetitions Actual Rows per Block
numeric(38,0) 0/1 62 1677504
numeric(38,0) 0/1 63 1677504
numeric(38,0) 0/1 64 2033344
numeric(38,0) 0/1 65 1686592
numeric(38,0) 65/119 2 931968
numeric(38,0) 65/119 3 931968
numeric(38,0) 65/119 4 931968
numeric(38,0) 65/119 62 931968
numeric(38,0) 65/119 63 931968
numeric(38,0) 65/119 64 2033344
numeric(38,0) 65/119 65 947765

Method #3

Data Type Data Type Size Storage Unit Size

Number
Encoding Units
per Block

int2 2 5 209715
int4 4 9 116508
int8 8 17 61680
numeric(38,0) 16 33 31775

(Note the negative value of -859340800 is due to the Redshift int4 system table
column recording the number of rows per block overflowing.)

Data Type Values
Repeti-
tions

Storage
Units per
Block

Estimated
Rows per
Block

Actual
Rows per
Block

int2 0/1 64 209715 13421772 13420416
int2 0/1 128 209715 26843545 26840832
int2 0/1 256 209715 53687091 53681664
int2 0/1 512 209715 107374182 107363328
int2 0/1 16384 209715 3435973836 -

859340800
int2 65/119 64 209715 13421772 13420416
int2 65/119 128 209715 26843545 26840832
int2 65/119 256 209715 53687091 53681664
int2 65/119 512 209715 107374182 107363328
int2 65/119 16384 209715 3435973836 -

859340800
int4 0/1 64 116508 7456540 7455744
int4 0/1 128 116508 14913080 14911488
int4 0/1 256 116508 29826161 29822976
int4 0/1 512 116508 59652323 59645952
int4 0/1 16384 116508 1908874353 1908670464

10

Data Type Values
Repeti-
tions

Storage
Units per
Block

Estimated
Rows per
Block

Actual
Rows per
Block

int4 65/119 64 116508 7456540 7455744
int4 65/119 128 116508 14913080 14911488
int4 65/119 256 116508 29826161 29822976
int4 65/119 512 116508 59652323 59645952
int4 65/119 16384 116508 1908874353 1908670464
int8 0/1 64 61680 3947580 3947136
int8 0/1 128 61680 7895160 7894272
int8 0/1 256 61680 15790320 15788544
int8 0/1 512 61680 31580641 31577088
int8 0/1 16384 61680 1010580540 1010466816
int8 65/119 64 61680 3947580 3947136
int8 65/119 128 61680 7895160 7894272
int8 65/119 256 61680 15790320 15788544
int8 65/119 512 61680 31580641 31577088
int8 65/119 16384 61680 1010580540 1010466816
numeric(38,0)0/1 64 31775 2033601 2033344
numeric(38,0)0/1 128 31775 4067203 4066688
numeric(38,0)0/1 256 31775 8134407 8133376
numeric(38,0)0/1 512 31775 16268815 16266752
numeric(38,0)0/1 16384 31775 520602096 520536064
numeric(38,0)65/119 64 31775 2033601 2033344
numeric(38,0)65/119 128 31775 4067203 4066688
numeric(38,0)65/119 256 31775 8134407 8133376
numeric(38,0)65/119 512 31775 16268815 16266752
numeric(38,0)65/119 16384 31775 520602096 520536064

Method #4

Data Type Values # Repetitions Actual Rows per Block
int2 0/1 64 (0b1000000) 13420416
int2 0/1 65 (0b1000001) 5694016
int2 0/1 66 (0b1000010) 5796780
int2 0/1 67 (0b1000011) 5793624
int2 0/1 68 (0b1000100) 6003856
int2 0/1 69 (0b1000101) 5890624
int2 0/1 70 (0b1000110) 5991232
int2 0/1 71 (0b1000111) 5985229
int2 0/1 72 (0b1001000) 6424640
int4 0/1 64 (0b1000000) 7455744
int4 0/1 65 (0b1000001) 4251072
int4 0/1 66 (0b1000010) 4308096
int4 0/1 67 (0b1000011) 4306358
int4 0/1 68 (0b1000100) 4421440
int4 0/1 69 (0b1000101) 4359744

11

Data Type Values # Repetitions Actual Rows per Block
int4 0/1 70 (0b1000110) 4414592
int4 0/1 71 (0b1000111) 4411328
int4 0/1 72 (0b1001000) 4645512
int4 0/1 90 (0b1011010) 4854656
int4 0/1 91 (0b1011011) 4846296
int4 0/1 92 (0b1011100) 4946624
int4 0/1 93 (0b1011101) 4883008
int4 0/1 94 (0b1011110) 4927808
int4 0/1 95 (0b1011111) 4918720
int4 0/1 96 (0b1100000) 5920800
int4 0/1 97 (0b1100001) 4953499
int4 0/1 98 (0b1100010) 4996928
int4 0/1 99 (0b1100011) 4987323
int4 0/1 100 (0b1100100) 5083500
int4 0/1 101 (0b1100101) 5020224
int4 0/1 102 (0b1100110) 5062400
int4 0/1 103 (0b1100111) 5052253
int4 0/1 104 (0b1101000) 5255016
int4 0/1 105 (0b1101001) 5083470
int4 0/1 106 (0b1101010) 5124480
int4 0/1 107 (0b1101011) 5113856
int4 0/1 108 (0b1101100) 5206144
int4 0/1 109 (0b1101101) 5143552
int4 0/1 110 (0b1101110) 5183424
int4 0/1 111 (0b1101111) 5172489
int4 0/1 112 (0b1110000) 5591824
int4 0/1 113 (0b1110001) 5200640
int4 0/1 114 (0b1110010) 5239488
int4 0/1 115 (0b1110011) 5228130
int4 0/1 116 (0b1110100) 5316800
int4 0/1 117 (0b1110101) 5254976
int4 0/1 118 (0b1110110) 5292800
int4 0/1 119 (0b1110111) 5281152
int4 0/1 120 (0b1111000) 5470320
int4 0/1 121 (0b1111001) 5306752
int4 0/1 122 (0b1111010) 5343616
int4 0/1 123 (0b1111011) 5331804
int4 0/1 124 (0b1111100) 5417088
int4 0/1 125 (0b1111101) 5356160
int4 0/1 126 (0b1111110) 5392170
int4 0/1 127 (0b1111111) 5379974
int4 0/1 128 (0b10000000) 14911488
int4 0/1 129 (0b10000001) 5464698
int4 0/1 130 (0b10000010) 5563350
int4 0/1 131 (0b10000011) 5549422
int4 0/1 132 (0b10000100) 5766592
int4 0/1 133 (0b10000101) 5634146
int4 0/1 134 (0b10000110) 5734530

12

Data Type Values # Repetitions Actual Rows per Block
int4 0/1 135 (0b10000111) 5718870
int4 0/1 136 (0b10001000) 6199696
int4 0/1 137 (0b10001001) 5803594
int4 0/1 138 (0b10001010) 5905710
int4 0/1 139 (0b10001011) 5888318
int4 0/1 140 (0b10001100) 6116096
int4 0/1 190 (0b10111110) 8131050
int4 0/1 191 (0b10111111) 8091142
int4 0/1 192 (0b11000000) 22367232
int4 0/1 193 (0b11000001) 8175866
int4 0/1 194 (0b11000010) 8302230
int4 65/119 64 (0b1000000) 7455744
int4 65/119 65 (0b1000001) 1433770
int4 65/119 66 (0b1000010) 1470348
int4 65/119 67 (0b1000011) 1469243
int4 65/119 68 (0b1000100) 1545708
int4 65/119 69 (0b1000101) 1504200
int4 65/119 70 (0b1000110) 1541050
int4 65/119 71 (0b1000111) 1538854
int4 65/119 72 (0b1001000) 1705968
int4 65/119 90 (0b1011010) 1870848
int4 65/119 91 (0b1011011) 1863953
int4 65/119 92 (0b1011100) 1948652
int4 65/119 93 (0b1011101) 1894503
int4 65/119 94 (0b1011110) 1932452
int4 65/119 95 (0b1011111) 1924700
int4 65/119 96 (0b1100000) 3050048
int4 65/119 97 (0b1100001) 1954560
int4 65/119 98 (0b1100010) 1992732
int4 65/119 99 (0b1100011) 1984257
int4 65/119 100 (0b1100100) 2071040
int4 65/119 101 (0b1100101) 2013435
int4 65/119 102 (0b1100110) 2051648
int4 65/119 103 (0b1100111) 2042387
int4 65/119 104 (0b1101000) 2236728
int4 65/119 105 (0b1101001) 2071040
int4 65/119 106 (0b1101010) 2109312
int4 65/119 107 (0b1101011) 2099340
int4 65/119 108 (0b1101100) 2188096
int4 65/119 109 (0b1101101) 2127360
int4 65/119 110 (0b1101110) 2165900
int4 65/119 111 (0b1101111) 2155176
int4 65/119 112 (0b1110000) 2609488
int4 65/119 113 (0b1110001) 2182595
int4 65/119 114 (0b1110010) 2221120
int4 65/119 115 (0b1110011) 2209840
int4 65/119 116 (0b1110100) 2300164
int4 65/119 117 (0b1110101) 2236689

13

Data Type Values # Repetitions Actual Rows per Block
int4 65/119 118 (0b1110110) 2275276
int4 65/119 119 (0b1110111) 2263380
int4 65/119 120 (0b1111000) 2466960
int4 65/119 121 (0b1111001) 2289683
int4 65/119 122 (0b1111010) 2328370
int4 65/119 123 (0b1111011) 2315844
int4 65/119 124 (0b1111100) 2407584
int4 65/119 125 (0b1111101) 2341625
int4 65/119 126 (0b1111110) 2380288
int4 65/119 127 (0b1111111) 2367280
int4 65/119 128 (0b10000000) 14911488
int4 65/119 129 (0b10000001) 2404560
int4 65/119 130 (0b10000010) 2455872
int4 65/119 131 (0b10000011) 2441840
int4 65/119 132 (0b10000100) 2562912
int4 65/119 133 (0b10000101) 2479120
int4 65/119 134 (0b10000110) 2531456
int4 65/119 135 (0b10000111) 2516400
int4 65/119 136 (0b10001000) 2795888
int4 65/119 137 (0b10001001) 2553680
int4 65/119 138 (0b10001010) 2606976
int4 65/119 139 (0b10001011) 2590960
int4 65/119 140 (0b10001100) 2718240
int4 65/119 190 (0b10111110) 3589312
int4 65/119 191 (0b10111111) 3560240
int4 65/119 192 (0b11000000) 22367232
int4 65/119 193 (0b11000001) 3597520
int4 65/119 194 (0b11000010) 3664896

14

Discussion

There are two major points to begin with.

The first major point is that Amazon have published very nearly no information
about the AZ64 encoder.

This is problematic.

Usually, a given encoder works staggeringly well when and only when used with
data which is just right for that encoder - data which expresses characteristics
which are appropriate for the way in which the encoder works.

Similarly, and critically, when a given encoder is used with data which is not
appropriate for the encoder, often you find the results are as staggeringly bad
as they would be good if the data had been just right.

So, for example, a runlength encoder, which stores a value and then a count
of how many times that value then occurs, works staggeringly well when the
values being encoded are repetitions of the same value; and staggeringly badly
when this is not so.

In all cases, to select the appropriate encoder for the data in hand, it is absolutely
necessary to know how the encoders work - and so what data is just right for
them - and to know what data you have in hand. There’s no getting around
this.

An encoder which has no documentation describing how it works, or at least the
characteristics of data it works well with, is absolutely and totally useless in every
single possible way, and cannot be used under any circumstances whatsoever,
and this is the case with AZ64.

As far as I can tell, the only information about AZ64 is found in an AWS a blog
post.

(There’s also the official doc page, but it’s completely devoid of content and as
such not worth even linking to, because there’s absolutely no information in it.)

That blog post compares AZ64 to LZO and ZSTD, and makes claims for AZ64
compressing much more, and much more quickly.

As we will see, however, AZ64 is a fundamentally different type of compression
method to LZO and ZSTD, and as such the data it works well, and works badly
with, is fundamentally different to the data for LZO and ZSTD (which although
different methods, are fundamentally similar).

15

https://aws.amazon.com/about-aws/whats-new/2019/10/amazon-redshift-introduces-az64-a-new-compression-encoding-for-optimized-storage-and-high-query-performance/
https://aws.amazon.com/about-aws/whats-new/2019/10/amazon-redshift-introduces-az64-a-new-compression-encoding-for-optimized-storage-and-high-query-performance/

This difference means comparing AZ64 to LZO and ZSTD is absolutely incorrect.

It’s akin to comparing runlength encoding to delta encoding; you simply cannot
compare them direct, without explanation, because they’re utterly different to
each other and are used in totally different situations and with totally different
data.

Additionally, I have unpublished benchmarks which utterly contradict the per-
formance claims made; I find AZ64 about the same, or very slightly faster, than
all the other encoders; the claims of 40% or 70% faster are, as far as I’ve found,
completely and utterly incorrect.

I regard that blog post as one of the very worst ever published by Amazon.

I suspect the unidentified chap who wrote the blog post to be the usual chap
who does the docs; and although I could be wrong, I think from all I’ve seen
over the years that the way it works is that someone gives him some information,
which he doesn’t really understand, he writes it up, and no one technical ever
reviews what is written.

The second major point is that I have spent a lot of time trying to figure out how
AZ64 works over the last four months, but I have been only partially successful.

I believe I have discerned the core encoding methods in use, and there are four
of them, but the problem is, although I may be wrong, as far as I can tell AZ64
looks to be half nonsense.

It appears to use one encoding method from Facebook, the Gorilla method,
which is excellent and makes sense, and three encoding methods, all of which
are runlength-like, which are baroquely complex, even bizarre, while at the same
time always being far less efficient, more complex, and much harder to reason
about than simplest and obvious runlength method of one copy of the datum
and a count of repetitions.

AZ64 to me make no sense, and this makes it problematic to figure out how it
operates; it’s easy to understand a method which makes optimal design choices
because it makes sense but hard to understand a method which does not, because
it could be doing anything for any reason at all.

Having said this then, let us turn to AZ64.

Overview
Essentially, I think AZ64 consists of the Gorilla encoder, published by Facebook
in 2015, with the runlength encoding behaviour removed, plus three different
runlength encoding methods, which I think are hand-rolled by Amazon.

AZ64 selects one of its four encoding methods depending on the situation, but
there is in this a lot of strange behaviour, which I can only really describe, as I
cannot explain in it terms which make sense to me.

The four encoding methods are explained in detail, but to begin with, an
overview of the methods and when they are used, to give a general feel for
what’s going on;

16

1. Gorilla Encoding

This can be considered the default method; it is used when there are no
repetition of values, which is to say, when we have rows where the value
differs from the value in the previous row.

2. Gorilla/Runlength Encoding with 63 or Fewer Repetitions

Gorilla encoding specifies behaviour to handle repetition of values, but
that behaviour has not been implemented.

Instead, when there is is repetition of values, but when the number of
repetitions is 63 or less, each value is encoded as if it were a single value
with no repetition (and so a great deal of compression is lost, as Gorilla
encodes repeated values using a single bit).

The normal, simple and obvious method for encoding repeated values is
to have a single copy of the value, and then a count of the number of
repetitions. I have no idea why it was not used.

3. Runlength Encoding with Positive Integer Power of 2 Repetitions

This method is used when there is repetition of values, and the number of
repetitions is positive integer power of 2, e.g. 64, 128, 256, etc.

(This encoding method handles a maximum of 16384 repetitions. When
there are more repetitions than this, they are encoded as blocks of 16384
repetitions, with the final block probably not a power of 2, and so handled
by one of the other encoding methods.)

With this method, the value being encoded makes no difference to the
number of rows in a block (unlike the other three methods).

This method fits the most rows into a block, and in fact can fit billions
of rows into a single block, which is extremely dangerous, as Redshift
normally can materialize rows only on a per-block basis, and so any query
which causes any rows in such a block to need to be materialized causes
all the rows in the block to be materialized.

It has been possible to develop math to exactly predict the behaviour of
this encoding method, and so to be able to exactly predict (as is then
proved with the test suite) the maximum possible number of rows per
block for the different data types.

As before, the normal, simple and obvious method for encoding repeated
values is to have a single copy of the value, and then a count of the number
of repetitions. I have no idea why it was not used.

4. Gorilla/Runlength Encoding with 65 or More Repetitions

This method is used when there is repetition of values, but when the
number of repetitions is 65 or more and the number of repetitions is not a
positive integer power of 2 (as when this is the case, method #3 is used).

With this method, both the value being encoded makes a difference to the
number of rows in a block (as is normal with Gorilla encoding), but also
the bit pattern of the number of repetitions makes a difference, and the

17

actual number of repetitions makes a difference (the bit pattern makes
a difference in the number of leading and trailing zeros, and so affects
encoding in a way which is different to its actual, numeric value), and as
such increasing the number of repetitions often decreases the number of
rows encoded per block, because the bit pattern becomes less favourable.

This is crazy. It is difficult to reason about, and it’s worse in every way
than the normal, simple and obvious method for encoding repeated values,
by having a single copy of the value, and then a count of the number of
repetitions. I have no idea why it was not used.

It looks like this encoding method behaves for the first 64 repetitions in
the same way as method #2 (so there is no extra compression beyond
Gorilla encoding with its repetition handling removed), but after that,
as the number of extra repetitions increases (and depending on the bit
pattern of the number of repetitions), there is an increasing gain in the
number of rows per block.

Encoding Method #1 : Gorilla Encoding
So, I will begin with the simplest and the sensible part of AZ64.

As far as I can tell, when the data values have no repetition (so each value differs
from the previous value), AZ64 encodes using the Gorilla encoding method from
Facebook, published in 2015, PDF available here.

(Note Gorilla encoding specifically supports highly efficient compression where
there is repetition, but as I will explain it looks to me this functionality has
been removed from this implementation.)

At this point I need to explain how Gorilla encoding works.

The Gorilla encoding method is based around the use of the bit-wise operator
XOR.

Here’s the XOR logic chart.

A B XOR
0 0 0
0 1 1
1 0 1
1 1 0

When we come to load data into Redshift, we typically have an incoming set of
rows, either from COPY or INSERT, and a table we’re going to load the rows into,
and we then load the incoming rows into the table.

To make life simple, let us here imagine the table has only a single column.

So we have a set of rows, each with one column, where each row then holds a
value in that column, and these rows and their values are loaded into the table.

18

https://www.vldb.org/pvldb/vol8/p1816-teller.pdf

With Gorilla encoding, however, we store is the first value in full (in the first
row), but after that, we store XOR results, rather than the actual original values
presented by COPY or INSERT.

So we take the first value and the second value, compute the XOR result, and
store the result in the second row; then we take the second value and the third
value, compute the XOR result and store the result in the third row, and so on
and so on.

Apart from the first value, which is a special case, we are not storing the actual,
original values - they are thrown away once they’ve been used to compute their
XOR result.

So we have our incoming rows and their values, from the COPY or INSERT com-
mand, we iterate over them, using them to compute XOR results, and we store
the XOR results, throwing away the actual original values from COPY or INSERT.

Now, a key property of XOR is that if you have one of the two values used to
produce a XOR result, and you have the result itself, you can from that value and
the result compute the other of the two values which generated the XOR result.

To render this algebraically;

a XOR b = result
a XOR result = b
b XOR result = a

Now, if we think back to what we’ve stored in the column in our table, we have
the first value in full, and then a series of XOR results.

We can in fact fully recompute all the original values from the COPY or INSERT
command.

We begin with the first row in the table; this stored in full the first original
value, so we directly have the first original value.

We then load the value from the second row, which as we recall is the XOR result
of the value from the first row with the value in the second row.

So now we have one of the original two values (the value from the first row),
and the XOR result, and so we can directly compute (by performing an XOR of
the original value and the result) the other of the two values used to compute
the stored XOR result (the original value from the second row).

So we can imagine our original incoming values were 5, 8, 10, 19, 6, then
we stored the 5 in full in the first row, and stored the XOR result of 5 and 8 in
the second row; and so now we take the 5 from the first row, the XOR result from
the second row, and that lets us compute that the original value in the second
row was 8.

Since we know now the full original value in the second row, we can in exactly
the same way take that value, and the XOR result in the third row, to compute
the original value in the third row (the 10).

We continue doing this, row after row, to fully compute all the original values.

19

Now, this is all good and well but so far pointless, because the length in bits
of an XOR result is the same as the length in bits as the values being XORed, so
we’re not saving any space and the whole point of this was data compression,
after all.

However, we now can describe some special data processing which can be per-
formed, which leads to data compression.

Let’s begin by looking at one or two example XOR calculations.

First, here’s an XOR for two values which have lots of different bits in their
bit-patterns;

datum value
A 1011 1011 1010 0000 1001
B 0000 1110 1110 1000 0000
XOR 1011 1010 0101 0111 0110

Second, here’s an XOR for two values which have lots of identical bits in their
bit-patterns;

datum value
A 0011 1101 1100 0000 1000
B 0011 1101 0101 0000 1000
XOR 0000 0000 1001 0000 0000

Notice the difference in the results? When two bits in A and B are the same,
you get a 0 bit in the result, so the more similar the two bit-patterns are, the
more 0 bits you get in the result.

It’s at this point we have a lovely opportunity for some cunning data compres-
sion.

So, first, remember, we’re storing entire XOR results. If we could find a way
somehow to need to store only partial results, we’d save a lot of disk space.

Next, remember how we’re decompressing the rows; we start with the first row,
which stores A in full, and then we use that along with the XOR result stored in
the second row, to compute the original value for the second row; and we then
use the original value from the second row along with the XOR result in the third
row, to compute the original value for third row, and so on…

So we normally have the first value of the two values used to make the XOR result,
and the result itself (and this allows us to compute the second value, which is
the original value of the row we’re looking at).

Now, remember - when in the result a bit is 0, then the bits in A and B were the
same.

We always have A (the original value of the current row), so when in the result
we have a 0 bit, we already know what the bit must be in B - it’s the same as
the matching bit in A.

20

So in fact, in theory, if we could find a way not to need to store the 0 bits in
the result - but still know where they were in the result - we would save a ton
of disk space; we could store a partial result, but still have all the information
we need to recompute B.

Now go back and have another look at the second XOR result, with lots of 0 bits.

Notice the large number of contiguous leading 0 bits and contiguous trailing 0
bits?

Rather than storing them all, why not store a count of the the number of leading
0 bits and the count of the number of trailing 0 bits? there are eight leading
and eight trailing bits, so we’re using eight bits, but we could for example use
just four bits to store the actual number eight. We also store in full the bits
in-between the leading and trailing 0 bits, because there’s no obvious reasonable
way given a bunch of mixed up 1 bits and 0 bits to avoid storing the 0 bits but
still be able to figure out where they are.

So, what we actually store is something like the number of leading 0 bits, the
actual bits in-between the leading and trailing 0 bits, and the length of the bits
in-between. We do not need to store the number of trailing 0 bits, because we
know the length of the data type of the column - of the three lengths, leading
0 bits, bits in-between, trailing 0 bits - we only need to store any two, because
we know the length of the data type.

In fact, Gorilla does some fancy footwork (which I’ll come to) to store the
necessary length information, much more so than just storing a count of the
number of contiguous 0 bits.

Now, what we do make of this, as a data compression method?

If we look at the first XOR example, we see that we save almost nothing at all -
there is only a single contiguous trailing 0 bit; so we save only a single bit. The
worst case then obviously is when both the very first and very last bits both
differ, and then Gorilla saves nothing - indeed, even if all the bits in-between
were 0 bits, it wouldn’t help us, because Gorilla works by compression contiguous
leading and trailing 0 bits; and the longer the data type with this happening,
the worse it is, because the the result is the same length as the length of the
data type.

The best case is when two numbers are identical. Then every bit in the result
is a 0 bit, and in fact in this case Gorilla encoding just stores a single 0 bit and
that’s it.

However, we have to remember it’s the bit-pattern which matters, so our base-10
intuition is not going to serve us well - for example, numbers which are integer
powers of 2 are going to be very different to their neighbouring numbers;

4294967296 = 100000000000000000000000000000000
4294967295 = 011111111111111111111111111111111

Only 1 difference, but the bit-patterns are almost entirely unlike each other.

However, we then see this;

4294967296 = 100000000000000000000000000000000

21

2147483648 = 010000000000000000000000000000000

And now we find our two numbers, which are about two billion apart, are almost
identical for Gorilla encoding; we have no leading 0 bits, two bits of “in-between”
bits, and then 31 bits of trailing 0 bits, which we save.

You can reason about Gorilla compression, but you have to think about it. It
operates in the domain of base 2, not base 10, and the more similar numbers are,
the better they compress - but similarity means contiguous leading and trailing
0 bits in the XOR result.

When we have small numbers in large data types, Gorilla works very well, be-
cause we end up with really long contiguous leading 0 bits. Imagine you have
a 64 bit data type, with two numbers being XORed, and both only use say the
least significant four or five bits each; you’re going to save about 60 bits in the
XOR result, from the huge number of leading contiguous 0 bits.

What this really means normally of course is that the data type is wrong; it’s
much too long for the values. However, there are going to be situations where
although normally the values are small, there is occasionally going to be a very
large value, and so the large data type is needed; and here Gorilla does very
well - although so do the mostly encoders.

I mentioned earlier that Gorilla encoding does some fancy footwork to encode
length information. This is what we find in the PDF;

1. When the value is identical to the previous value, store a 0 bit and that’s
it; no lengths are stored, no body, we’re done.

2. When re-using previously stored length information (explained below),
store a 1 bit (so we can tell the difference between this and what’s stored
for identical values), and then a 0 bit (to indicate re-use), and then the
XOR body (see notes below about this not making sense).

3. When writing length information, store a 1 bit (non-identical), then a 1
bit (to indicate storing lengths) the leading zero length (in 5 bits), the
body length (in 6 bits) and then the XOR body.

Re-use of previously stored length information is something which Gorilla
chooses to do, as an optimization. When storing a value, if the length of both
the leading zeros and the body are less than the most recently stored lengths
(so the lengths stored for the most recent value which actually did have lengths
written out), just write a 1 bit, which indicates the re-use of the most recently
stored lengths, and then write the body.

Note that this is what to me the white paper seems to say, but it doesn’t quite
make sense to me - I think you’d need to pad the XOR body with leading and
trailing 0 bits to match the lengths being used, and so you’d only do perform
re-use if the padding was less than the 11 bits needed to store the lengths.

Gorilla Encoding in Redshift
Now, it’s not exactly clear to me how Redshift is encoding Gorilla length in-
formation. I know for sure (as will be described in the next section) that the
standard Gorilla encoding of identical values is not in use; Redshift has deviated
from the standard Gorilla spec.

22

Empirically, by issuing test cases, I can demonstrate that the number of bits
needed to store the current row is the number of bits of contiguous difference
between the bit-patterns of the current row and the previous row, plus an over-
head, where the overhead is;

Data Type Length Overhead in Bits per Row
2 0.5
4 1
8 2
16 4

Experimentation shows this formula is accurate. It is impossible to be exactly
accurate, because in Redshift each block has a small header, something like 120
bytes, but that header length seems to vary a bit, so it’s not possible to exactly
know how much of a block is available to store user data, and you need to know
that exactly, to exactly figure out how many rows will be stored in a block.

Let’s look at some examples of alternating values being stored and the number
of rows we estimate will be found in one block, and the number of rows we
actually find. The “Values” column has two values, and these alternate through
the entire block, the “# Bits Stored” is per row, as is the “Overhead”, and
“Estimated Rows per Block” is computed by dividing the number of bits in one
block by the number of bits needed for one row. Finally, we then have the
“Actual Rows per Block”, as found by the test script.

(The negative numbers in “Values” unfortunately do not render very well.)

Data
Type Values

Bits
Stored Overhead

Expected
Rows
per
Block

Actual
Rows
per
Block

int2 0/1 1 0.5 1.5 5,592,405 5,591,809
int4 0/1 1 1 2 4,194,304 4,193,856
int8 0/1 1 2 3 2,796,202 2,795,904
int2 51/60 4 0.5 4.5 1,864,135 1,863,937
int4 -

2147483648/-
1

32 1 33 262,144 262,881

int4 -
2147483648/0

1 1 2 4,194,304 4,193,856

Particularly given the large number of difference in rows for the last two ex-
amples, which differ only by storing a -1 or a 0, it’s hard to imagine Gorilla
encoding is not in use, because we would need to dream up some other com-
pression method which has exactly the same extremely unusual and highly dis-
tinctive characteristics and behaviour. It is only reasonably possible to explain
these findings by imaging XOR based compression, which compresses contiguous
leading and trailing 0 bits in the XOR result, and that is Gorilla encoding.

23

We can look more closely at the final two findings.

First, int4, storing values -2147483648 and -1, with one repetition of each (e.g. -
2147483648/-1/-2147483648/-1/-2147483648/-1/etc).

-2147483648 = 10000000000000000000000000000000
-1 = 11111111111111111111111111111111

There are 31 bits of contiguous difference between each pair of values, and a 1
bit overhead per value for int4, so we expect each value to use 32 bits. There
are 102410248 = 8,388,608 bits in one block. 8,388,608 / 32 = 262,144 rows per
block. The actual number of rows found, by experimentation, is 262,881.

Second, int4, storing values -2147483648 and 0, with one repetition of each
(e.g. -2147483648/0/-2147483648/0/-2147483648/0/etc).

-2147483648 = 10000000000000000000000000000000
0 = 00000000000000000000000000000000

There is 1 bit of contiguous difference between each pair of values, and a 1 bit
overhead per value, so we expect each value to use 2 bits. There are 102410248
= 8,388,608 bits in one block. 8,388,608 / 2 = 4,194,304 rows per block. The
actual number of rows found, by experimentation, is 4,193,856.

So, in summary, we can then make some hard and fast rules about the use of
AZ64 when it is using Gorilla encoding;

1. Never use AZ64 (with Gorilla encoding) on any columns in interleaved
tables. The values in all columns in interleaved tables are effectively ran-
domly ordered.

2. Never use AZ64 (with Gorilla encoding) on any columns in unsorted tables.

3. With compound sorted tables, only use AZ64 (with Gorilla encoding) on
columns which are part of the sortkey. Never use AZ64 (with Gorilla
encoding) on columns which are outside of the sortkey.

4. Never use AZ64 with data which has consecutive rows with the same value,
as the 1-bit runlength encoding behaviour in Gorilla has been removed
and replaced by what appear to be three different, all crazy, runlength
methods.

In short, use AZ64 when and only when the value is a row is always different to
the previous row, and when the XOR result for each row has as many contiguous
leading and trailing 0 bits as is possible.

Turning to the results, taking one of them to explain it, this is the result for
int2 with values -32768/-1.

Datum Value
First value -32768
First value (pattern) 1000000000000000
Second value -1
Second value (pattern) 0000000000000001
XOR 0111111111111111

24

Datum Value
Stored bit pattern 111111111111111
Stored length in bits 15
Overhead in bits 0.5
Bits per Block 8388608
Estimated rows per block 541200.52
Actual rows per block 541121

We see the first and second values and their bit-patterns, then the XOR result of
those bit-patterns which is almost all 1 bits. Gorilla strips away the contiguous
leading and trailing 0 bit, which here saves us only the single leading 0 bit, and
so we then see the bits we’ll actually store, and that we store 15 bits.

Next is the unexplained but observed overhead per row, which for int2 is 0.5
bits. Then we have a simple constant, the number of bits in one block, and as
one block is one megabyte, that is 8388608 bits.

We can now estimate the number of rows per block - each row will consume 15.5
bits, and 8388608 divided by 15.5 gives 541200.52; finally we have the actual
number of rows found by the test script.

The slight difference is I think due to the per-block header.

Encoding Method #2 : Gorilla/Runlength En-
coding with 63 or Fewer Repetitions
Now, Gorilla encoding as defined in its PDF normally handles repeated values
extremely well. The first value is stored, and after that every repetition of that
value is stored using a single bit. It is expected then that repetitions will lead
to excellent compression.

This is however not what is found.

Bizarrely, when storing alternating blocks of values (such as 0/1, or 65/99),
when each of the values is repeated, up to 63 times, the number of values stored
in a block very nearly does not change - a difference of a few rows, out of
millions, as we change the number of repetitions by 1; in other words, runlength
compression is not occurring.

This is to me incomprehensible. It’s simply a lost compression opportunity;
there is no gain by it, and no reason for not compressing.

So here we have results from the test script, for the values 0/1 and 65/119.

Each row of the table is the result of a single test, where of the two values
in a value pair, each is repeated a give number of times, as specified in the
“# Repetitions” column. So for the first row in the table, the data in the
table consists of 0, repeated twice, followed by 1, repeated 2, with this pattern
continuing until the first block is full. We then see how many rows are in the
first block.

25

Data Type Values # Repetitions Actual Rows per Block
int2 0/1 2 5591810
int2 0/1 3 5591811
int2 0/1 4 5591812
int2 0/1 62 5591842
int2 0/1 63 5591817
int2 0/1 64 13420416
int2 0/1 65 5694016
int2 65/119 2 1524994
int2 65/119 3 1524993
int2 65/119 4 1524996
int2 65/119 62 1525014
int2 65/119 63 1525041
int2 65/119 64 13420416
int2 65/119 65 1567800

As we can see, the number of values stored changes as the values change, but
the number of rows store does not change (not meaningfully - just by a very
few rows, probably something to do with how much overhead is consumed in
the first block) as the number of repetitions occurs (with the exception of 64
repetitions, because then method #2 kicks in, as 64 is an integer power of 2).

If Gorilla encoding has been used as defined in its white paper, with a single bit
for every repetition of a value, it would perform far better than AZ64 is doing
here, where AZ64 is re-using the full Gorilla encoded bit-pattern for the repeated
value for every row.

The upshot of this in terms of using AZ64 is that with 63 or fewer repetitions,
there is no compression improvement over single repetitions.

Encoding Method #3 : Runlength Encoding with
Positive Integer Power of 2 Repetitions
The next encoding mode presented by AZ64 comes into use when the number
of repetitions is a positive integer power of 2, between 64 and 16384 (inclusive
both ends).

For these particular number of repetitions, a “storage unit” is written to disk,
the size of which is the data type size in bytes times two, plus one byte, where
the storage unit contains the full value being stored (and as such the value being
stored no longer matters, as it did before with encoding methods #1 and #2),
and the storage unit records the number of repetitions of the value (which must
be a positive integer power of 2, between 64 and 16384 inclusive both ends - if
it is not, this encoding method is not used).

This encoding method can store very large numbers of rows per block, and as
such in fact determines the maximum possible rows per block for AZ64.

We can directly compute the maximum number of values per block (which is
when we have 16384 repetitions per storage unit) and these values have been

26

found, empirically, in the test suite, to be exactly correct.

Data Type
Data Type
Size

Storage Unit
Size

Number
Storage
Units

Max Rows
per Block

int2 2 5 209694 3,435,626,496
int4 4 9 116496 1,908,670,464
int8 8 17 61674 1,010,466,816
numeric(38) 16 33 31771 520,536,064

I am astounded by this behaviour.

1. I may be wrong, I’ve not checked materialization behaviour in Redshift
for some time, but I think it is dangerous. It allows an extremely large
number of rows in a single block, and Redshift used to and I believe still
does basically materialize rows on a per-block basis (so if you need one row
in a block, you get all of them), so that if Redshift attempts to materialize
such as block, then the cluster may well grind to a halt - a couple of
billion rows usually brings most systems to their knees. Such blocks then
are booby-traps, and you need to make sure when using AZ64 that your
data is such that no such blocks end up being encoded.

2. The simplest runlength encoder design would store the entire value being
encoded, followed by a count of the number of repetitions. The maximum
number of repetitions allowed here is 16384, which is 15 bits. If we think
then about say int8 we’re talking 64 bits for the value and 15 bits for the
count, which is 79 bits. With this encoding method though, int8 uses 136
bits.

The smallest storage unit seen is for int2, at 40 bits. A runlength encoder
would need 16 bits for the int2 and 15 bits for the length encoding, a total
of 39 bits, so even in this case, method #3 is inferior.

As a method for storing runlength information, method #3 makes abso-
lutely no sense.

3. As an encoding method, despite being more complex and less effective than
the simplest runlength encoder, it nevertheless compresses profoundly
more effectively than either of the other runlength-like compression meth-
ods used in AZ64 (method #2 and #4). Apart from the problem of mas-
sively large row counts (which could be handled with some code to limit
the maximum number of rows), the power-of-2 runlength encoding method
is fantastically more efficient than methods #2 and #4; why are the other
methods in existence at all, particular method #4 with it baroque design
which depends on the value being encoded, the number of repetitions and
the bit-pattern of the number of repetitions? and why is this method
in existence but limited to positive integer powers of 2 repetitions only?
why would you have all three methods in the first place, and then use the
best one only very rarely? and why would you have any of them, when
the simplest runlength encoder is better than all of them? exactly which
drugs were the dev team snorting when they did this work?

27

Encoding Method #4 : Gorilla/Runlength En-
coding with 65 or More Repetitions
The next encoding mode presented by AZ64 comes into use when the number of
repetitions is 65 or greater, and is not a positive integer power of 2, between 64
and 16384 inclusive both ends.

I think the first 64 repetitions receive no extra compression at all, just as with
63 or fewer repetitions, but that the additional repetitions over 64 obtain some
form of runlength compression.

With this method, both the value being encoded, and the number of repetitions,
affect compression, but, surprisingly, of the number of repetitions, both the
number itself but also its bit-pattern affect compression, such that increasing
the number of repetitions often reduces compression because the bit-pattern
has become less favourable, and the magnitude of effect of the bit-pattern can
be extremely large - many times greater than the number of repetitions itself.

We can examine the actual results found from the test script, for int4.

Note the number of repetitions tested is not contiguous. This is to reduce the
time taken to run the test script.

Data Type Values # Repetitions Actual Rows per Block
int4 0/1 64 (0b1000000) 7455744
int4 0/1 65 (0b1000001) 4251072
int4 0/1 66 (0b1000010) 4308096
int4 0/1 67 (0b1000011) 4306358
int4 0/1 68 (0b1000100) 4421440
int4 0/1 69 (0b1000101) 4359744
int4 0/1 70 (0b1000110) 4414592
int4 0/1 71 (0b1000111) 4411328
int4 0/1 72 (0b1001000) 4645512
int4 0/1 90 (0b1011010) 4854656
int4 0/1 91 (0b1011011) 4846296
int4 0/1 92 (0b1011100) 4946624
int4 0/1 93 (0b1011101) 4883008
int4 0/1 94 (0b1011110) 4927808
int4 0/1 95 (0b1011111) 4918720
int4 0/1 96 (0b1100000) 5920800
int4 65/119 64 (0b1000000) 7455744
int4 65/119 65 (0b1000001) 1433770
int4 65/119 66 (0b1000010) 1470348
int4 65/119 67 (0b1000011) 1469243
int4 65/119 68 (0b1000100) 1545708
int4 65/119 69 (0b1000101) 1504200
int4 65/119 70 (0b1000110) 1541050
int4 65/119 71 (0b1000111) 1538854
int4 65/119 72 (0b1001000) 1705968
int4 65/119 90 (0b1011010) 1870848
int4 65/119 91 (0b1011011) 1863953

28

Data Type Values # Repetitions Actual Rows per Block
int4 65/119 92 (0b1011100) 1948652
int4 65/119 93 (0b1011101) 1894503
int4 65/119 94 (0b1011110) 1932452
int4 65/119 95 (0b1011111) 1924700
int4 65/119 96 (0b1100000) 3050048
int4 65/119 97 (0b1100001) 1954560

64 repetitions invokes method #2, but after that we’re looking at the behaviour
of method #4.

What we see is that both the values being stored, the number of repetitions,
and the bit pattern of the number of repetitions, affect the number of rows per
block.

Something Gorilla-like is happening with the number of repetitions.

This can be seen clearly by looking at 96 repetitions, where we then have a large
number of trailing 0 bits; the number of rows stored per block suddenly shoots
up to 3,050,048, from the 1,924,700 of 95 repetitions.

This is though different to method #2, because with the powers of 2 (which is
method #2), the number of rows per block does not change when the values
being encoded change, whereas with the non-powers of 2, such as 96, the number
of rows stored does change depending on the values being encoded.

This number of repetitions is usually less important than the bit-pattern of the
number of repetitions can be much more important than the actual number of
repetitions. For values 0/1 we see the following;

Data Type Values # Repetitions Actual Rows per Block
int4 0/1 96 (0b1100000) 5920800
int4 0/1 135 (0b10000111) 5718870
int4 0/1 136 (0b10001000) 6199696

For example, 96 repetitions gives 5,920,800 rows per block, a value we do not
manage to exceed until we get to 136 repetitions, with 6,199,696 rows per block.

Needless to say, it is not expected that increasing the number of repetitions
reduces compression.

Of all the encoding methods in AZ64, this is the method where I’ve least pinned
down what’s going on, and this is due to a complete lack of motivation, because
what’s going on looks to be crazy, and so there is no value in figuring it out.
What should have been implemented is the usual runlength method of one
value, plus a count of repetitions, plus, should you want to limit the number of
repetitions so blocks do not have too many rows, an arbitrary maximum number
of repetitions.

29

Conclusions

The AZ64 encoder appears to implement four different compression methods,
each of which is used in different circumstances.

1. When a value differs to the value in the previous row, the Gorilla com-
pression method from Facebook (2015) is used. Gorilla encoding is based
on storing for each row the result of an XOR of a value with the value in
the previous row, but removing from the XOR result all contiguous leading
and trailing 0 bits; which is to say, the more there are identical contiguous
leading and trailing bits, in the two values, the better.

Note however the Gorilla specification encodes repeated values in 1 bit,
but that this behaviour has been removed from the AZ64 implementation
and replaced with three different runlength encoding methods, described
below.

2. When a value repeats, from 2 to 63 times, the full Gorilla encoding for
the value is used in each row (rather than storing 1 bit). This is a lost
compression opportunity.

3. When a value repeats, and the number of repetitions is a positive integer
power of 2, from 64 to 16384 inclusive both ends, a “storage unit” (from
5 to 33 bytes inclusive both ends in length, depending on the data type)
is used to encode a copy of the value and a 15 bit counter of the number
of repetitions.

This allows billions of rows per block, which I think highly dangerous when
materializing rows (I’ve yet to investigate this, but I currently think rows
are materialized on a per block basis, so needing to materialize any row in
a block means all its rows are materialized), and in fact also overflows the
signed 32 bit num_values column in ’STV_BLOCKLIST‘, which becomes
negative.

4. When a value repeats, more than 64 times but the number of repetitions is
not a positive integer power of 2, the number of values per block is based
on the value being stored, the number of repetitions, and the bit pattern
of the number of repetitions, where Gorilla-like encoding is occurring on
the value as well as the number of repetitions, such that increasing the
number of repetitions often decreases the number of rows stored per block.

I have not pinned down exactly how this method works, because it seems
crazy, and I simply can find no motivation within myself to figure it out

30

https://docs.aws.amazon.com/redshift/latest/dg/r_STV_BLOCKLIST.html

when there’s so many more pressing investigations to work on.

When it comes to using AZ64, observe the following rules;

1. Never use AZ64 with interleaved tables, as the values in rows are basically
random, which is the worst use case for this compression method.

2. Never use AZ64 with unsorted tables, for the same reason (unless you
control your data load so it is in fact ordered, even though the table is
not).

3. Never use AZ64 with unsorted columns (outside of the sortkey) in com-
pound sorted tables.

4. Never use AZ64 with data which repeats, as runlength encoding is better.

Note that Redshift’s default encoding selection behaviour ignores all these rules.

If you have been creating tables using CREATE TABLE AS, or using CREATE TABLE
but without specifying encodings, or using COPY to load data with COMPUPDATE
in used in a non-sampling mode (I’ve not checked with sampling), you will find
AZ64 is used for all data types it supports (with the exception of columns in
sortkeys, which are are raw). Recently AWS also introduced an option to have
Redshift select column encodings automatically on an ongoing basis, changing
encodings as it sees fit; I absolutely would not use this functionality until it has
been investigated and found to be safe.

In short, AZ64 performs when well the XOR of the value in the current row
and the previous row has as many contiguous leading and trailing 0 bits as
possible. That’s not quite intuitive to work with, because for example with
int2, -32678 and 0 works almost perfectly (1 bit stored per value), but -32678
and -1 works appallingly (15 bits stored per value). You need to understand
how the compression method works to use it correctly; there’s never any getting
away from this, not for any compression method.

I strongly recommend AZ64 is not used when any of its runlength encoding
methods would come into play.

The only information I have ever seen from AWS about AZ64 is in this blog post,
here.

As we can now directly see, comparing AZ64 to ZSTD and LZO is wrong, as they
are different types of compression method. AZ64 works extremely well on values
which when XORed with the value in the previous row have many contiguous
leading and trailing 0 bits in the XOR result, but increasingly poorly as we move
from this to data which is more and more random, where-as ZSTD and LZO are
general purpose compression methods which work reasonably well on all data.

For AZ64 to have done so much better, as described in the blog post, the data
must have been carefully chosen to be highly suitable for AZ64 and reporting
only this test scenario, and so presenting it as the normal scenario, is unethical.

Furthermore, I have as-yet unpublished benchmarks showing AZ64 to be at best
a couple of percentage points faster than LZO or ZSTD.

I assert that the information AWS have published, to the extent I think I now
understand AZ64, has no credibility.

31

https://aws.amazon.com/about-aws/whats-new/2019/10/amazon-redshift-introduces-az64-a-new-compression-encoding-for-optimized-storage-and-high-query-performance/

There is, as far as I can see, no connection at all between the blog post and the
reality of the encoding method.

I call upon AWS to publish their benchmark method and the data used.

32

Revision History

v1
• Initial release.

v2
• Changed to Redshift Research Project (AWS have a copyright on “Amazon

Redshift”).

v3
• Added “About the Author”. made site name in title a link, and made each

chapter start a new page.
• Updated links to amazonredshiftresearcproject.org to redshiftresearcpro-

ject.org.

v4
• Web-site name changed to “Redshift Observatory”.
• Updated links from redshiftresearcproject.org to redshift-observatory.ch.

v5
• Removed “About The Author”.
• Added Slack join URL.

33

Appendix A : Raw Data
Dump

Note these results are completely unprocessed; they are a raw dump of the
results, so the original, wholly unprocessed data, is available.
{'proofs': {'dc2.large': {2: {'method_1': {'int2': {-32768: {-1: {1: 541121},

0: {1: 5591809}},
0: {1: {1: 5591809}},
51: {60: {1: 1863937}}},

'int4': {-2147483648: {-1: {1: 262081},
0: {1: 4193856}},

0: {1: {1: 4193856}},
51: {60: {1: 1677505}}},

'int8': {-9223372036854775808: {-1: {1: 129025},
0: {1: 2795904}},

0: {1: {1: 2795904}},
51: {60: {1: 1397952}}},

'numeric(38,0)': {0: {1: {1: 1677504}},
51: {60: {1: 1048448}}}},

'method_2': {'int2': {0: {1: {2: 5591810,
3: 5591811,
4: 5591812,
62: 5591842,
63: 5591817,
64: 13420416,
65: 5694016}},

65: {119: {2: 1524994,
3: 1524993,
4: 1524996,
62: 1525014,
63: 1525041,
64: 13420416,
65: 1567800}}},

'int4': {0: {1: {2: 4193856,
3: 4193856,
4: 4193856,
62: 4193856,
63: 4193856,
64: 7455744,
65: 4251072}},

65: {119: {2: 1397952,

34

3: 1397952,
4: 1397952,
62: 1397952,
63: 1397952,
64: 7455744,
65: 1433770}}},

'int8': {0: {1: {2: 2795904,
3: 2795904,
4: 2795904,
62: 2795904,
63: 2795904,
64: 3947136,
65: 2821248}},

65: {119: {2: 1198210,
3: 1198209,
4: 1198212,
62: 1198212,
63: 1198260,
64: 3947136,
65: 1224470}}},

'numeric(38,0)': {0: {1: {2: 1677504,
3: 1677504,
4: 1677504,
62: 1677504,
63: 1677504,
64: 2033344,
65: 1686592}},

65: {119: {2: 931968,
3: 931968,
4: 931968,
62: 931968,
63: 931968,
64: 2033344,
65: 947765}}}},

'method_3': {'int2': {0: {1: {64: 13420416,
128: 26840832,
256: 53681664,
512: 107363328,
16384: -859340800}},

65: {119: {64: 13420416,
128: 26840832,
256: 53681664,
512: 107363328,
16384: -859340800}}},

'int4': {0: {1: {64: 7455744,
128: 14911488,
256: 29822976,
512: 59645952,
16384: 1908670464}},

65: {119: {64: 7455744,
128: 14911488,
256: 29822976,
512: 59645952,
16384: 1908670464}}},

35

'int8': {0: {1: {64: 3947136,
128: 7894272,
256: 15788544,
512: 31577088,
16384: 1010466816}},

65: {119: {64: 3947136,
128: 7894272,
256: 15788544,
512: 31577088,
16384: 1010466816}}},

'numeric(38,0)': {0: {1: {64: 2033344,
128: 4066688,
256: 8133376,
512: 16266752,
16384: 520536064}},

65: {119: {64: 2033344,
128: 4066688,
256: 8133376,
512: 16266752,
16384: 520536064}}}},

'method_4': {'int2': {0: {1: {64: 13420416,
65: 5694016,
66: 5796780,
67: 5793624,
68: 6003856,
69: 5890624,
70: 5991232,
71: 5985229,
72: 6424640}}},

'int4': {0: {1: {64: 7455744,
65: 4251072,
66: 4308096,
67: 4306358,
68: 4421440,
69: 4359744,
70: 4414592,
71: 4411328,
72: 4645512,
90: 4854656,
91: 4846296,
92: 4946624,
93: 4883008,
94: 4927808,
95: 4918720,
96: 5920800,
97: 4953499,
98: 4996928,
99: 4987323,
100: 5083500,
101: 5020224,
102: 5062400,
103: 5052253,
104: 5255016,
105: 5083470,

36

106: 5124480,
107: 5113856,
108: 5206144,
109: 5143552,
110: 5183424,
111: 5172489,
112: 5591824,
113: 5200640,
114: 5239488,
115: 5228130,
116: 5316800,
117: 5254976,
118: 5292800,
119: 5281152,
120: 5470320,
121: 5306752,
122: 5343616,
123: 5331804,
124: 5417088,
125: 5356160,
126: 5392170,
127: 5379974,
128: 14911488,
129: 5464698,
130: 5563350,
131: 5549422,
132: 5766592,
133: 5634146,
134: 5734530,
135: 5718870,
136: 6199696,
137: 5803594,
138: 5905710,
139: 5888318,
140: 6116096,
190: 8131050,
191: 8091142,
192: 22367232,
193: 8175866,
194: 8302230}},

65: {119: {64: 7455744,
65: 1433770,
66: 1470348,
67: 1469243,
68: 1545708,
69: 1504200,
70: 1541050,
71: 1538854,
72: 1705968,
90: 1870848,
91: 1863953,
92: 1948652,
93: 1894503,
94: 1932452,

37

95: 1924700,
96: 3050048,
97: 1954560,
98: 1992732,
99: 1984257,
100: 2071040,
101: 2013435,
102: 2051648,
103: 2042387,
104: 2236728,
105: 2071040,
106: 2109312,
107: 2099340,
108: 2188096,
109: 2127360,
110: 2165900,
111: 2155176,
112: 2609488,
113: 2182595,
114: 2221120,
115: 2209840,
116: 2300164,
117: 2236689,
118: 2275276,
119: 2263380,
120: 2466960,
121: 2289683,
122: 2328370,
123: 2315844,
124: 2407584,
125: 2341625,
126: 2380288,
127: 2367280,
128: 14911488,
129: 2404560,
130: 2455872,
131: 2441840,
132: 2562912,
133: 2479120,
134: 2531456,
135: 2516400,
136: 2795888,
137: 2553680,
138: 2606976,
139: 2590960,
140: 2718240,
190: 3589312,
191: 3560240,
192: 22367232,
193: 3597520,
194: 3664896}}}}}}},

'tests': {'dc2.large': {2: {}}},
'versions': {'dc2.large': {2: 'PostgreSQL 8.0.2 on i686-pc-linux-gnu, '

'compiled by GCC gcc (GCC) 3.4.2 20041017 (Red '

38

'Hat 3.4.2-6.fc3), Redshift 1.0.35649'}}}

39

Redshift Observatory Slack

I’ve started up a Redshift Slack.

Join URL is;

https://join.slack.com/t/redshiftobservatory/shared_invite/zt-2vm3deqis-
hc6h4GMDcG6Gs7~IECQNuQ

40

https://join.slack.com/t/redshiftobservatory/shared_invite/zt-2vm3deqis-hc6h4GMDcG6Gs7~IECQNuQ
https://join.slack.com/t/redshiftobservatory/shared_invite/zt-2vm3deqis-hc6h4GMDcG6Gs7~IECQNuQ

	Introduction
	Test Method
	Results
	dc2.large, 2 nodes (1.0.35649)
	Method #1
	Method #2
	Method #3
	Method #4

	Discussion
	Overview
	Encoding Method #1 : Gorilla Encoding
	Gorilla Encoding in Redshift

	Encoding Method #2 : Gorilla/Runlength Encoding with 63 or Fewer Repetitions
	Encoding Method #3 : Runlength Encoding with Positive Integer Power of 2 Repetitions
	Encoding Method #4 : Gorilla/Runlength Encoding with 65 or More Repetitions

	Conclusions
	Revision History
	v1
	v2
	v3
	v4
	v5

	Appendix A : Raw Data Dump
	Redshift Observatory Slack

