
Materialized Views

Max Ganz II @ Redshift Observatory

5th September 2021

https://www.redshift-observatory.ch

Abstract

Materialized views are implemented as a normal table, a normal view and a
procedure, all created by the CREATE MATERIALIZED VIEW command, where the
procedure is called by the REFRESH MATERIALIZED VIEW command and performs
refresh. The table is created by CREATE TABLE AS, which is why column encod-
ings cannot be specified. The encoding choices made by Redshift are extremely
poor. A full refresh makes a new table, populates it, and uses table rename to
replace the existing table. An incremental refresh uses an insert followed by a
delete, using the system columns deletexid and insertxid to keep track of
which rows have changed, and as such runs a full refresh when any of the tables
used by the materialized view have either manually or automatically been vac-
uumed, as vacuum resets the values in the deletexid and insertxid columns
and so invalidates the book-keeping information held by the materialized view,
this information being stored in extra columns in the materialized view, one
plus one for every table used in the materialized view SQL. The table under-
lying the materialized view is never vacuumed, except by auto-vacuum, which
I suspect running so infrequently as to be inconsequential. Auto-refresh is an
undocumented black box, likely subject to ongoing unannounced change, and
its behaviour is unpredictable. On a small single column table on an idle clus-
ter refresh occurred normally after about 55 seconds; with one row inserted per
second, refresh occurred after between 54 to 1295 seconds (twenty-one minutes).

Contents

Introduction 3

Test Method 4
Auto-Refresh . 4
Creation and Refresh . 4
Column Encodings . 4
Additional Columns . 5
VACUUM . 5

Results 6
dc2.large, 2 nodes (1.0.29551) . 6

Auto-Refresh Delay (Count Only) 6
Auto-Refresh Delay (Count With Insert) 6
Materialized View Column Encoding Choices 7
VACUUM Source Table . 7
VACUUM Materialized View Underlying Table 8
Materialized View Full Column List (One Source Table, Full Re-

fresh) . 9
Materialized View Full Column List (Two Source Tables, Full

Refresh) . 9
Table, View and Proc Counts (B/A CMV, Full Refresh) 10
Materialized View Text From pg_views (Full Refresh) 10
CREATE MATERIALIZED VIEW (Full Refresh) 10
REFRESH MATERIALIZED VIEW (Full Refresh) 11
Materialized View Full Column List (One Source Table, Incre-

mental Refresh) . 12
Materialized View Full Column List (Two Source Tables, Incre-

mental Refresh) . 13
Table, View and Proc Counts (B/A CMV, Incremental Refresh) 13
Materialized View Text From pg_views (Incremental Refresh) . 13
CREATE MATERIALIZED VIEW (Incremental Refresh) 14
REFRESH MATERIALIZED VIEW (Incremental Refresh) . . . 14

Discussion 17
Implementation . 17

Creation . 17
Refresh . 18

1

VACUUM . 20
VACUUM Induces Full Refresh 20
Materialized Views Are Only Auto-Vacuumed 21

Column Encodings . 21
Auto-Refresh . 21
Additional Columns . 23
Full vs Incremental Refresh . 23
System Tables . 24

Conclusions 26

Unexpected Findings 29

Revision History 31
v1 . 31
v2 . 31
v3 . 31
v4 . 31
v5 . 31
v6 . 31

Appendix A : Raw Data Dump 32

Appendix B : AZ64 Encoding 33

Redshift Observatory Slack 36

2

Introduction

Redshift added support for materialized views near the end of 2019.

Materialized views are a method for pre-computing the results of a query, so
that when the results come to be used, the time and work to compute them has
already been expended.

A Redshift materialized view is defined in the same way as a normal view, as
an SQL statement, but unlike a normal view - where the name of the view is
replaced by its SQL in the text of an SQL query issued against the view - a
materialized view actually produces the rows of the SQL defining the material-
ized view and stores them on disk, in a table, and a query issued against the
materialized view actually uses that table.

The concept of pre-computing results is useful and widespread, but I aver there
are in Redshift’s implementation numerous design and implementation flaws
which ensure that materialized views are the exact same amount of development
work and complexity, but with much less performance, than manually creating
and maintaining your own pre-computed results, and as such, there are no
circumstances where it is correct to use them.

This document then examines the internal implementation of materialized views
and assesses and critiques their behaviour.

3

Test Method

There are quite a few tests.

Auto-Refresh
An empty single column table is created, and then a materialized view, with
auto refresh on, is created, which uses that table.

The table then has ten exactly full blocks inserted, and then the materialized
view is monitored, once per second, to time how long auto-refresh takes.

The test is then repeated, but now immediately before each check of the mate-
rialized view, a single row is inserted into the underlying table, on every check.

This is repeated five times, to give a range of auto-refresh times. Since this
is not a performance test in the usual sense, but more of a discovery, where
extremes matter, all five times form the results.

Creation and Refresh
A normal, empty table is created, and then a materialized view is created using
that table. Auto refresh is off, and a window function is used in the materialized
view definition to ensure a full refresh is in use. The SQL command sequence
induced by creating the materialized view is captured and examined.

Then a single row is inserted into the underlying table, and the materialized
view is refreshed. The SQL command sequence induced by refreshing the ma-
terialized view is captured and examined, to obtain insight into the internal
implementation of materialized views.

The test is then repeated, but without a window function, to allow incremental
refresh, and captures the SQL command sequence issued in this case.

Column Encodings
A table is created with one column per data type. A materialized view is created,
using this table. The encodings selected by Redshift are then taken from the
system tables.

4

Additional Columns
Two tables each with a single column is created. A full and an incremental
materialized view are created using one table in their SQL, and a second full
and incremental materialized view are created using both tables in their SQL.
In all cases, the full list of columns in the materialized view is taken from the
system tables.

VACUUM
A table with a single column is created. An incremental refresh material-
ized view is created using this table. A sequence of INSERT and REFRESH
MATERIALIZED VIEW occur, where it is noted if the refreshes are full or incre-
mental. The table ends up with some sorted and some unsorted rows and a
VACUUM is issued on the table, and then one more REFRESH, again noting the
refresh type of the final refresh.

A table with a single column is created. An incremental refresh material-
ized view is created using this table. A sequence of INSERT and REFRESH
MATERIALIZED VIEW occur, where it is noted if the refreshes are full or incre-
mental. The table ends up with some sorted and some unsorted rows and a
VACUUM is issued on the materialized view, noting the number of sorted and un-
sorted rows before and after. Next, a VACUUM is issued on the table underlying
the materialized view, noting the number of sorted and unsorted rows before
and after, and also then issuing a REFRESH, to see if this VACUUM induced a full
refresh.

5

Results

Test duration was 2,948 seconds.

All times are in seconds.

dc2.large, 2 nodes (1.0.29551)
Auto-Refresh Delay (Count Only)
Often the first and second iterations vary considerably, and then times settle to
about 55 seconds. Note though the test fully tears down the test environment
between each test, so it’s a little strange we seem to see state persisting over
test runs.

Iteration Delay
0 11.06
1 54.31
2 53.53
3 55.13
4 54.03

Auto-Refresh Delay (Count With Insert)
These results are typical. Making the table busy, by inserting to it, seems to
throw off the auto-refresh algorithm. On the other hand, I also saw exactly one
run which looked exactly like the “Count Only” test, above; first run about 10
seconds, rest about 55 seconds.

Iteration Delay
0 240.62
1 54.23
2 1294.94
3 542.90
4 176.52

6

Materialized View Column Encoding Choices
These are the encoding choices made by Redshift for a materialized view, given
empty tables being used by the SQL for the materialized view.

Ordinal Name Data Type Encoding
-9 deletexid int8 raw
-8 insertxid int8 raw
-7 tableoid oid raw
-6 cmax cid raw
-5 xmax xid raw
-4 cmin cid raw
-3 xmin xid raw
-2 oid oid raw
-1 ctid tid raw
1 column_01 bool raw
2 column_02 char(256) lzo
3 column_03 char(64) lzo
4 column_04 date az64
5 column_05 float4 raw
6 column_06 float8 raw
7 column_07 geometry raw
8 column_08 hllsketch raw
9 column_09 int2 az64
10 column_10 int4 az64
11 column_11 int8 az64
12 column_12 numeric(19,0) az64
13 column_13 numeric(38,0) az64
14 column_14 varchar(256) lzo
15 column_15 time az64
16 column_16 timestamp az64
17 column_17 timestamptz az64
18 column_18 timetz az64
19 column_19 varchar(64) lzo
20 table_1_oid int8 az64
21 num_rec int4 az64

VACUUM Source Table
“Materialized view mv_1 was incrementally updated successfully” is given for
an incremental refresh.

“Materialized view mv_1 was recomputed successfully” is given for a full refresh.

We see here a VACUUM on the source table forces a full refresh.

1. create table table_1
(
column_1 bigint not null encode raw

)

7

diststyle even
compound sortkey(column_1);

2. create materialized view mv_1
diststyle even
compound sortkey(column_1)
auto refresh no

as
select
*

from
table_1;

3. insert into table_1(column_1) values ('1'), ('2'), ('3'), ('4'), ('5'), ('6');
4. refresh materialized view mv_1;
5. INFO: Materialized view mv_1 was incrementally updated successfully.
6. insert into table_1(column_1) values ('1'), ('2'), ('3'), ('4'), ('5'), ('6');
7. refresh materialized view mv_1;
8. INFO: Materialized view mv_1 was incrementally updated successfully.
9. insert into table_1(column_1) values ('1'), ('2'), ('3'), ('4'), ('5'), ('6');
10. vacuum full table_1 to 100 percent;
11. refresh materialized view mv_1;
12. INFO: Materialized view mv_1 was recomputed successfully.

VACUUM Materialized View Underlying Table
The key rows here are the counts of sorted and unsorted rows.

We can see on lines 9, 10 and 11 a VACUUM of the materialized view did nothing.

We can see on lines 12 and 13, VACUUM of the underlying table sorted the under-
lying table, and we then see on lines 14 and 15, this did not then force a full
refresh.

1. create table table_1
(
column_1 bigint not null encode raw

)
diststyle even
compound sortkey(column_1);

2. create materialized view mv_1
diststyle even
compound sortkey(column_1)
auto refresh no

as
select
*

from
table_1;

3. insert into table_1(column_1) values ('1'), ('2'), ('3'), ('4'), ('5'), ('6');
4. refresh materialized view mv_1;
5. INFO: Materialized view mv_1 was incrementally updated successfully.
6. insert into table_1(column_1) values ('1'), ('2'), ('3'), ('4'), ('5'), ('6');

8

7. refresh materialized view mv_1;
8. INFO: Materialized view mv_1 was incrementally updated successfully.
9. 6 sorted rows, 6 unsorted rows
10. vacuum full mv_1 to 100 percent;
11. 6 sorted rows, 6 unsorted rows
12. vacuum full mv_tbl__mv_1__0 to 100 percent;
13. 12 sorted rows, 0 unsorted rows
14. insert into table_1(column_1) values ('1'), ('2'), ('3'), ('4'), ('5'), ('6');
15. refresh materialized view mv_1;
16. INFO: Materialized view mv_1 was incrementally updated successfully.

Materialized View Full Column List (One Source Table,
Full Refresh)
The row_number column is part of the source table, it’s used to force a full
refresh.

We see here there are no additional columns.

Ordinal Name Data Type Encoding
-9 deletexid int8 raw
-8 insertxid int8 raw
-7 tableoid oid raw
-6 cmax cid raw
-5 xmax xid raw
-4 cmin cid raw
-3 xmin xid raw
-2 oid oid raw
-1 ctid tid raw
1 row_number int8 az64
2 column_1 int8 raw

Materialized View Full Column List (Two Source Tables,
Full Refresh)
The row_number column is part of the source table, it’s used to force a full
refresh.

We see here there are no additional columns.

Ordinal Name Data Type Encoding
-9 deletexid int8 raw
-8 insertxid int8 raw
-7 tableoid oid raw
-6 cmax cid raw
-5 xmax xid raw
-4 cmin cid raw
-3 xmin xid raw
-2 oid oid raw

9

Ordinal Name Data Type Encoding
-1 ctid tid raw
1 row_number int8 az64
2 column_1 int8 raw

Table, View and Proc Counts (B/A CMV, Full Refresh)
The numbers of tables, views and procedures before and after a CREATE
MATERIALIZED VIEW, for a full refresh materialized view.

Before After
Tables 947 948
Views 547 548
Procs 0 1

Materialized View Text From pg_views (Full Refresh)
The SQL source in pg_views for a full refresh materialized view. A normal view
contains only the SQL statement which forms the view.

create materialized view mv_1 diststyle even compound sortkey(column_1)
auto refresh no as select row_number() over (partition by column_1 order by
column_1), column_1 from table_1;

CREATE MATERIALIZED VIEW (Full Refresh)
The SQL commands induced by a CREATE MATERIALIZED VIEW with a full re-
fresh materialized view.

Event Time System Table SQL
2021-09-05
21:28:33.306758

stl_querytext create materialized view
mv_1 diststyle even
compound sortkey(
column_1) auto refresh
no as select
row_number() over (
partition by column_1
order by column_1),
column_1 from
table_1;

10

Event Time System Table SQL
2021-09-05
21:28:33.323018

stl_ddltext create materialized view
mv_1 diststyle even
compound sortkey(
column_1) auto refresh
no as select
row_number() over (
partition by column_1
order by column_1),
column_1 from
table_1;

2021-09-05
21:28:33.324324

stl_ddltext create materialized view
mv_1 diststyle even
compound sortkey(
column_1) auto refresh
no as select
row_number() over (
partition by column_1
order by column_1),
column_1 from
table_1;

2021-09-05
21:28:33.326914

stl_querytext padb_fetch_sample:
select count(*) from
mv_tbl__mv_1__0

REFRESH MATERIALIZED VIEW (Full Refresh)
The SQL commands induced by a REFRESH MATERIALIZED VIEW with a full
refresh materialized view.

Event Time SQL
2021-09-05 21:28:35.975696 REFRESH MATERIALIZED VIEW

mv_1;
2021-09-05 21:28:35.977569 CALL

public.mv_sp__mv_1__1_0(7434,
7439, 1, ‘(0)’);

2021-09-05 21:28:35.989098 CREATE TABLE
public.mv_tbl__mv_1__0__tmp
BACKUP YES DISTSTYLE EVEN
COMPOUND SORTKEY(2)AS (
SELECT ROW_NUMBER() OVER
(PARTITION BY
“table_1”.”column_1” ORDER BY
“table_1”.”column_1” ASC NULLS
LAST) AS “row_number”,
“table_1”.”column_1” AS
“column_1” FROM
“public”.”table_1” AS “table_1”)

11

Event Time SQL
2021-09-05 21:28:36.006137 Analyze mv_tbl__mv_1__0__tmp
2021-09-05 21:28:36.006278 padb_fetch_sample: select * from

mv_tbl__mv_1__0__tmp
2021-09-05 21:28:36.082477 CREATE OR REPLACE VIEW

public.mv_1 AS SELECT * FROM
public.mv_tbl__mv_1__0__tmp

2021-09-05 21:28:36.084287 DROP TABLE
public.mv_tbl__mv_1__0

2021-09-05 21:28:36.085588 ALTER TABLE
public.mv_tbl__mv_1__0__tmp
RENAME TO mv_tbl__mv_1__0

2021-09-05 21:28:36.087398 CREATE OR REPLACE VIEW
public.mv_1 AS SELECT * FROM
public.mv_tbl__mv_1__0

2021-09-05 21:28:36.090246 COMMIT

Procedure SQL

mv_sp__mv_1__1_0(recompute bool, end_xid int8, start_xid int8, finished_xid_list varchar)
begin
if recompute then
create table public.mv_tbl__mv_1__0__tmp backup yes diststyle even compound sortkey(2)as (select row_number() over (partition by "table_1"."column_1" order by "table_1"."column_1" asc nulls last) as "row_number", "table_1"."column_1" as "column_1" from "public"."table_1" as "table_1")
create or replace view public.mv_1 as select * from public.mv_tbl__mv_1__0__tmp;
drop table public.mv_tbl__mv_1__0;
alter table public.mv_tbl__mv_1__0__tmp rename to mv_tbl__mv_1__0;
create or replace view public.mv_1 as select * from public.mv_tbl__mv_1__0;

else
delete from public.mv_tbl__mv_1__0;
insert into public.mv_tbl__mv_1__0(select row_number() over (partition by "table_1"."column_1" order by "table_1"."column_1" asc nulls last) as "row_number", "table_1"."column_1" as "column_1" from "public"."table_1" as "table_1");

end if;
end;

Materialized View Full Column List (One Source Table,
Incremental Refresh)
Incremental materialized views have additional columns. Here we see the addi-
tional num_rec column, and then one further column, table_1_oid.

Ordinal Name Data Type Encoding
-9 deletexid int8 raw
-8 insertxid int8 raw
-7 tableoid oid raw
-6 cmax cid raw
-5 xmax xid raw
-4 cmin cid raw
-3 xmin xid raw
-2 oid oid raw

12

Ordinal Name Data Type Encoding
-1 ctid tid raw
1 column_1 int8 raw
2 table_1_oid int8 az64
3 num_rec int4 az64

Materialized View Full Column List (Two Source Tables,
Incremental Refresh)
Incremental materialized views have additional columns. Here we see the ad-
ditional num_rec column, and then two further columns, table_1_oid and
table_2_oid; in general there is one additional column per table in the SQL
forming the materialized view.

Ordinal Name Data Type Encoding
-9 deletexid int8 raw
-8 insertxid int8 raw
-7 tableoid oid raw
-6 cmax cid raw
-5 xmax xid raw
-4 cmin cid raw
-3 xmin xid raw
-2 oid oid raw
-1 ctid tid raw
1 column_1 int8 raw
2 table_1_oid int8 az64
3 table_2_oid int8 az64
4 num_rec int4 az64

Table, View and Proc Counts (B/A CMV, Incremental Re-
fresh)
The numbers of tables, views and procedures before and after a CREATE
MATERIALIZED VIEW, for an incremental refresh materialized view.

Before After
Tables 947 948
Views 547 548
Procs 0 1

Materialized View Text From pg_views (Incremental Re-
fresh)
The SQL source in pg_views for an incremental refresh materialized view. A
normal view contains only the SQL statement which forms the view.

13

create materialized view mv_1 diststyle even compound sortkey(column_1)
auto refresh no as select column_1 from table_1;

CREATE MATERIALIZED VIEW (Incremental Refresh)

Event Time System Table SQL
2021-09-05
21:28:40.468523

stl_querytext create materialized view
mv_1 diststyle even
compound sortkey(
column_1) auto refresh
no as select column_1
from table_1;

2021-09-05
21:28:40.484168

stl_ddltext create materialized view
mv_1 diststyle even
compound sortkey(
column_1) auto refresh
no as select column_1
from table_1;

2021-09-05
21:28:40.485893

stl_ddltext create materialized view
mv_1 diststyle even
compound sortkey(
column_1) auto refresh
no as select column_1
from table_1;

2021-09-05
21:28:40.491842

stl_querytext padb_fetch_sample:
select count(*) from
mv_tbl__mv_1__0

REFRESH MATERIALIZED VIEW (Incremental Re-
fresh)

Event Time SQL
2021-09-05 21:28:41.664228 REFRESH MATERIALIZED VIEW

mv_1;
2021-09-05 21:28:41.665943 CALL

public.mv_sp__mv_1__1_0(7475,
7480, 0, ‘(0)’);

14

Event Time SQL
2021-09-05 21:28:41.678324 INSERT INTO

“public”.”mv_tbl__mv_1__0”
(SELECT “table_1”.”column_1” AS
“column_1”, CAST(“table_1”.”oid”
AS INT8) AS “table_1_oid”,
CAST(1 AS INT4) AS “num_rec”
FROM “public”.”table_1” AS
“table_1” WHERE
((CAST(“table_1”.”insertxid” AS
INT8) > 7475) OR
CAST(“table_1”.”insertxid” AS
INT8) IN (0)) AND
((CAST(“table_1”.”insertxid” AS
INT8) <= 7480) AND
(CAST(“table_1”.”deletexid” AS
INT8) > 7480)))

2021-09-05 21:28:41.772182 DELETE FROM
“public”.”mv_tbl__mv_1__0”
USING (SELECT
“table_1”.”column_1” AS
“column_1”, CAST(“table_1”.”oid”
AS INT8) AS “table_1_oid”,
CAST(-1 AS INT4) AS “num_rec”
FROM “public”.”table_1” AS
“table_1” WHERE
(CAST(“table_1”.”insertxid” AS
INT8) <= 7475) AND (NOT
CAST(“table_1”.”insertxid” AS
INT8) IN (0) AND
(((CAST(“table_1”.”deletexid” AS
INT8) > 7475) OR
CAST(“table_1”.”deletexid” AS
INT8) IN (0)) AND
(CAST(“table_1”.”deletexid” AS
INT8) <= 7480)))) AS
“mv_tbl__mv_1__0__deletes”
WHERE
“mv_tbl__mv_1__0”.”table_1_oid”
=
“mv_tbl__mv_1__0__deletes”.”table_1_oid”

2021-09-05 21:28:41.845141 COMMIT

Procedure SQL

mv_sp__mv_1__1_0(recompute_mv bool, end_xid int8, start_xid int8, finished_xid_list varchar)
begin
if recompute_mv then
execute $_7275328207056490759_$ create table "public"."mv_tbl__mv_1__0_recomputed" backup yes diststyle even compound sortkey(1) as (select "table_1"."column_1" as "column_1", cast("table_1"."oid" as int8) as "table_1_oid", cast(1 as int4) as "num_rec" from "public"."table_1" as "table_1" where (cast("table_1"."insertxid" as int8) <= $_7275328207056490759_$ || end_xid || $_7275328207056490759_$) and (cast("table_1"."deletexid" as int8) > $_7275328207056490759_$ || end_xid || $_7275328207056490759_$)) $_7275328207056490759_$

15

create or replace view "public"."mv_1" as (select "derived_table1"."column_1" as "column_1" from "public"."mv_tbl__mv_1__0_recomputed" as "derived_table1");
drop table "public"."mv_tbl__mv_1__0";
alter table "public"."mv_tbl__mv_1__0_recomputed" rename to "mv_tbl__mv_1__0";
create or replace view "public"."mv_1" as (select "derived_table1"."column_1" as "column_1" from "public"."mv_tbl__mv_1__0" as "derived_table1");

else
execute $_7275328207056490759_$ insert into "public"."mv_tbl__mv_1__0" (select "table_1"."column_1" as "column_1", cast("table_1"."oid" as int8) as "table_1_oid", cast(1 as int4) as "num_rec" from "public"."table_1" as "table_1" where ((cast("table_1"."insertxid" as int8) > $_7275328207056490759_$ || start_xid || $_7275328207056490759_$) or cast("table_1"."insertxid" as int8) in $_7275328207056490759_$ || finished_xid_list || $_7275328207056490759_$) and ((cast("table_1"."insertxid" as int8) <= $_7275328207056490759_$ || end_xid || $_7275328207056490759_$) and (cast("table_1"."deletexid" as int8) > $_7275328207056490759_$ || end_xid || $_7275328207056490759_$))) $_7275328207056490759_$;
execute $_7275328207056490759_$ delete from "public"."mv_tbl__mv_1__0" using (select "table_1"."column_1" as "column_1", cast("table_1"."oid" as int8) as "table_1_oid", cast(-1 as int4) as "num_rec" from "public"."table_1" as "table_1" where (cast("table_1"."insertxid" as int8) <= $_7275328207056490759_$ || start_xid || $_7275328207056490759_$) and (not cast("table_1"."insertxid" as int8) in $_7275328207056490759_$ || finished_xid_list || $_7275328207056490759_$ and (((cast("table_1"."deletexid" as int8) > $_7275328207056490759_$ || start_xid || $_7275328207056490759_$) or cast("table_1"."deletexid" as int8) in $_7275328207056490759_$ || finished_xid_list || $_7275328207056490759_$) and (cast("table_1"."deletexid" as int8) <= $_7275328207056490759_$ || end_xid || $_7275328207056490759_$)))) as "mv_tbl__mv_1__0__deletes" where "mv_tbl__mv_1__0"."table_1_oid" = "mv_tbl__mv_1__0__deletes"."table_1_oid" $_7275328207056490759_$;

end if;
end;

16

Discussion

Implementation
Creation
When the CREATE MATERIALIZED VIEW command is issued we see in the trans-
action four SQL statements are issued.

On the face of it, what we see is strange. We see the create command three
times, once in STL_QUERYTEXT and twice in STL_DDLTEXT, and then we see
in STL_QUERYTEXT a final command of SELECT, which is being used for a
padb_fetch_sample, which is a query typically issued by ANALYZE.

Now, I have in fact observed in the past that which is logged in these system
tables is not strictly the text of the commands issued. This can be seen here
in the final command, which is a status message followed by SQL, or in the
messages logged by VACUUM, which behaves in the same way.

If you approach these tables expecting them to behave as they are described in
the docs and as their names indicate, and to contain only DDL/SQL commands,
you will be disappointed. You will need to parse the output, it can be arbitrary,
and you have no idea what it can be until you happen to see it.

What I think is actually happening here is that the text in STL_DDLTEXT is a
bug, and the wrong SQL text is being logged.

If we examine the counts of tables, views and procedures before and after CREATE
MATERIALIZED VIEW, we see the command creates one table, one view and one
procedure.

I think what’s happening is that the first command is the CREATE MATERIALIZED
VIEW we actually issued, which must be creating the view and since this it the
first command and so the table which will be created does not yet exist, it must
be this view is created with late binding; and the second and third commands
are actually a CREATE PROCEDURE followed by a CREATE TABLE AS, and the final
command is the automatic sampling of data performed by the inherent ANALYZE
issued by CREATE TABLE AS.

A materialized view, then, is a normal view (with the name passed by the
caller to CREATE MATERIALIZED VIEW) which points at a normal table created
by Redshift, which is used to store the materialized rows, but we also have a
mysterious (but to be explained) procedure.

17

This explains why materialized views are listed in pg_class with the relkind
‘v’; what we’re seeing there is the view part of the materialized view.

This is though a colossal blunder, as the only way now I can get a list of normal
views from pg_class is to list all views, and then EXCEPT from that list the list
of materialized view names from STV_MV_INFO. Whomever had this happen was
asleep at the wheel.

Moreover, this is in fact also a breaking change, because I have replacement
system tables which show information about normal views, and they abruptly
began also showing information about materialized views; and the SQL recorded
in the system tables for a normal view is not the entire CREATE VIEW command,
but only the SQL statement given to CREATE VIEW to define the view, but the
SQL recorded in the system tables for a materialized view is the entire CREATE
MATERIALIZED VIEW command, so it’s two breaking changes.

The same problem is also seen in pg_views, which is now showing materialized
views as well as normal views.

When it comes to databases, where they are so central and critical as core
components of larger systems - like operating system kernels - breaking changes
are almost verboten. If you are going to make them, you telegraph them in
advance to the user base and you announce them when they happen and you
document them heavily.

Silent breaking changes, with no announcement and no documentation, are so
profoundly and completely off-the-map they are utterly inconceivable. No dev
team would do this, from awareness of their users’ needs and because of the
catastrophic loss of trust and reputation - and every now and then, I see such a
change being made in Redshift. It’s not a one-off thing.

I think the devs are unaware of the impact their changes are having on end-users.

Refresh
It is now the mysterious procedure comes into play.

The REFRESH MATERIALIZED VIEW command in fact calls the procedure, which
in turn contains a bit of logic and a number of SQL commands and implements
refresh, be it full or incremental.

We can see the procedure text in the Results, and see that there are two dif-
ferent procedures, one for materialized views with full refresh, the other for
materialized views with incremental refresh.

Here’s how they work, remembering that being inside a procedure, every set of
SQL commands is executed inside a transaction;

Full Refresh Procedure, Recompute True

1. Create new table (with a temp name)
2. Modify view to use new table
3. Drop original table
4. Rename new table to original table name

18

5. Modify view to use renamed new table

Full Refresh Procedure, Recompute False

1. Delete all rows in table
2. Insert all rows (by executing the materialized view SQL statement)

Incremental Refresh Procedure, Recompute True

1. Create new table (with a temp name)
2. Modify view to use new table
3. Drop original table
4. Rename new table to original table name
5. Modify view to use renamed new table

Incremental Refresh Procedure, Recompute False

1. Insert new records into table
2. Delete old records from table

Note when recompute is true the avoidance of truncate table and instead
the creation and rename of a new table. This is because truncate commits the
current transaction. If issued in a procedure, it commits the current transaction
and a new transaction automatically and immediately begins - which means then
that the table holding the rows of materialized view is for a certain period of
time empty and seen to be empty by users of the materialized view, which isn’t
going to fly.

In general truncate table when needed inside a transaction can be replaced
by the method used here.

Now, I would say in most ETL systems, it’s often possible to truncate and then
insert (which also means a vacuum is not required), or simply to insert.

The implementation here though of materialized views has no access to infor-
mation about the system within which it is being used, and so it has to play it
safe; it must use a method - delete and insert inside a transaction (which then
mandates a vacuum, because this makes a mess of the underlying table) - which
is always going to be correct, even though that means being awfully expensive
in the situations where it is in fact possible to use much more efficient methods.

The behaviour then of the procedures is all pretty clear, except there is some-
thing remarkable; the path for the Incremental Refresh where recompute is
false uses the system columns found in every table, deletexid and insertxid,
to figure out which rows to insert and which to delete.

This is a real surprise. I tried in the past to access these columns and access
was forbidden (“column does not exist”), and indeed trying this now it still
doesn’t work, neither when issuing SQL directly and also not in a procedure.
Note Postgres does allow access to these columns.

I suspect it may be it works in these procedures because the owner of the
materialized view procedure is rdsdb, the über-user, the user owned by Amazon,

19

which is more powerful than the mere system admin user allowed to whomever
created the cluster. Remember - Redshift is like Android : you are not root.

VACUUM
VACUUM Induces Full Refresh
In the documentation, there is a peculiar and entirely unexplanatory paragraph
which warns about an interaction between automatic background vacuum with
the auto-refresh of materialized views;

Background vacuum operations might be blocked if materialized
views aren’t refreshed. After an internally defined threshold period,
a vacuum operation is allowed to run. When this vacuum operation
happens, any dependent materialized views are marked for recom-
putation upon the next refresh (even if they are incremental). For
information about VACUUM, see VACUUM. For more information
about events and state changes, see STL_MV_STATE. 1

When I first read that documentation paragraph, I had absolutely no idea what
was going on - why on earth would auto-vacuum care about whether or not
materialized views were updated or not?

However, I’ve investigated the materialized view implementation enough that
I think I can now actually penetrate the murk and explain what’s going on,
and this in fact reveals a stupendous and truly staggering omission from the
documentation.

When a materialized view is using a full refresh, there is no problem at all.
There is no interaction between vacuum, or auto-vacuum, and refresh, whether
it is automatic or manual.

The quoted paragraph in fact only applies to incremental refresh materialized
views.

When a materialized view is using incremental refresh, it is in fact relying upon
the use of the system columns deletexid and insertxid, which are in every
table, to figure out what row changes have occurred, as that information is
required to perform an incremental refresh.

The problem is that when a VACUUM - of any kind, manual or automatic - runs,
it resets the values in the insertxid and deletexid columns. This of course
completely messes up the record-keeping information being used by a material-
ized view to perform incremental refresh - and so, perforce, a full refresh has to
occur.

What the documentation so saliently fails to mention is that this need for a full
refresh is induced not only by auto-vacuum, but by normal, manually issued
vacuum.

1Now, I have to say I have over the years of investigating Redshift come fully to the view to
documentation is not reviewed by technical staff. I think what happens is someone explains
to the author, who is not a software engineer, who then writes down his grasp of what has
been said, and I think everyone, all along the line, is trying to obfuscate everything which is
not a strength.

20

https://docs.aws.amazon.com/redshift/latest/dg/materialized-view-refresh-sql-command.html

So, to be clear : every time you VACUUM any table used by an incremental-refresh
materialized view, the next refresh will be a full refresh.

This is also true for any auto-vacuum on any table used by an incremental-
refresh materialized view, but auto-vacuum seems to run so infrequently I sus-
pect this doesn’t play much of a part.

Materialized Views Are Only Auto-Vacuumed
You cannot in fact, despite appearances, directly VACUUM a materialized view.

The VACUUM command will run, it will not throw an error, and it will return the
status message VACUUM and so it will look exactly like it ran, but it does not run.
This is not documented.

You can VACUUM the underlying table which holds the rows of the materialized
view. This does work, and it does what you expect; the problem is that this is
not documented, and the name of this table is quite well hidden; you need to
investigate the SQL commands issued by CREATE MATERIALIZED VIEW to find
it.

As a consequence, and this is an enormous problem, the only VACUUM operating
on materialized views is whatever is afforded by background auto-vacuum, which
is regarded by myself and a number of fellow Redshift admin as running so
infrequently as to have negligible effect.

Vacuuming the underlying table does not induce a full refresh (it’s deletexid
and insertxid columns are not used in refresh).

Finally, note that when an incremental refresh materialized view actually has
an incremental refresh, an insert has been issued, followed by a delete and
so at this point, a VACUUM is needed. For both full refresh, and an incremental
refresh which runs in full refresh mode, where a new underlying table has been
created from scratch and repopulated, a VACUUM is not needed.

Column Encodings
When you create a materialized view, you can specify the sorting type and
keys, and the distribution type (and distribution column). What you cannot
specify are the column encodings. Redshift automatically selects encodings.
The problem is, in my view, Redshift makes extremely poor encoding choices
and this by itself is a fatal shortcoming.

A discussion of this assertion is long and takes us a long way from materialized
views, so I have moved it to Appendix B.

Auto-Refresh
Materialized views are described in the documentation as offering an option to
automatically bring themselves up to date when the underlying data changes,
but, critically, there are no guarantees of when this occurs, and the algorithm

21

which when updates occur is an undocumented, likely complex, black box which
is going to be undergoing ongoing silent changes.

A quote from the docs;

To complete refresh of the most important materialized views with
minimal impact to active workloads in your cluster, Amazon Red-
shift considers multiple factors. These factors include current system
load, the resources needed for refresh, available cluster resources, and
how often the materialized views are used.

There are tens of thousands of Redshift systems out there. Real life is infinitely
more complicated than we can imagine and so design for. The idea, for example,
that a materialized view which is used more often is more important is simply
not true; it may be a good rule of thumb, but that’s small consolation if someone
applies that rule of thumb to your system when it’s not true.

Moreover, any complex system has design and implementation flaws. The im-
plementation for example of AutoWLM has to my knowledge gone through at
least three major rewrites, the earlier versions being complete failures and even
the current version I think remaining inherently flawed, just less blatantly and
up-front problematically so (such that if you tried AutoWLM, you had to disable
it, since it was killing your system, as happened in the earlier versions).

In any event, I fully and completely hold the view that it is not possible to know-
ingly design a correct system when that system contains black boxes controlled
by a third party who silently and on an ongoing basis changes their function,
let alone when those black boxes are complex and likely flawed.

(This is a major problem with Redshift these days. It’s happening a lot.)

In fact, another feature of Redshift, the automatic background vacuum, has
exactly the same automatic update behaviour and is described in the same way
in its documentation. It’s been found that the automatic background vacuum
runs too infrequently to be useful.

I didn’t want to get into an open-ended exploration exploration of the factors
involved in auto-refresh, because there’s so many that could be involved, and
they vary so much (which leads to the question of how you test this functionality
in the first place), so I made two simple tests, just to get the beginning of a feel
for behaviour;

1. Create an empty table with a single column, create a materialized view
with auto-fresh active, using that table, insert a single row into the table
and then poll the materialized view once per second and see how long
auto-refresh takes.

2. Create an empty table with a single column, create a materialized view
with auto-fresh active, using that table, insert a single row into the table
and then poll the materialized view once per second and see how long
auto-refresh takes, but now on every poll, insert one record into the table.

In both cases, the cluster (two node dc2.large) is completely idle, and we can
have a reasonable expectation that refresh times will be extended the busier a
cluster becomes. Both tests were repeated five times.

22

For the first test case, in the test run for this document, the first refresh time was
ten seconds, then went to 40 seconds, then became stable at about 55 seconds.
(On earlier runs, I saw refresh times as low as 3 seconds and as high as 140
seconds). In general, the first two runs vary (maybe by as much as a minute)
but the later test runs settle at 55 seconds - which is still a bit odd, given the
materialized view and table are both being dropped and re-created on every test
run; it looks like Redshift is maintaining state of some kind relating to refresh
decisions which is not tied to the given materialized view and its table(s).

For the second test case, the delay was much more variable and often much
longer, ranging from 54 seconds to 1295 seconds (twenty minutes).

The obvious question is : how do you build an ETL system when one of the
stages of data propagation through that system is outside of your control, you
have only a rough idea of how long it might take, where that idea could be
up-ended by factors you are unaware of, and where the behaviour of that stage
could also change at any time, without notice?

The answer obviously is that you cannot; you need to manually issue the refresh
command at the appropriate point in the ETL process. I assert auto-refresh has
no value.

Additional Columns
A materialized view which uses full refresh has no extra columns added into the
underlying table.

A materialized view which uses incremental refresh has a number of extra
columns, the number being 1 (num_rec) plus 1 for every table used by the
SQL of the materialized view.

Full vs Incremental Refresh
When a materialized view is created, Redshift examines the SQL and determines
if the materialized view when refreshed will experience full refresh or incremental
refresh, with incremental refresh being used if possible (being preferred).

If you want a materialized view with incremental refresh, there’s a wide range
of restrictions on the SQL which can be used to form a materialized view - none
of the following are permitted;

• OUTER JOIN (RIGHT, LEFT, or FULL).
• Set operations: UNION, INTERSECT, EXCEPT, MINUS.
• UNION ALL when it occurs in a subquery and an aggregate function or

a GROUP BY clause is present in the query.
• Aggregate functions: AVG, MEDIAN, PERCENTILE_CONT,

LISTAGG, STDDEV_SAMP, STDDEV_POP, APPROXIMATE
COUNT, APPROXIMATE PERCENTILE, and bitwise aggregate func-
tions (Note the COUNT and SUM aggregate functions are supported.)

• DISTINCT aggregate functions, such as DISTINCT COUNT, DISTINCT
SUM, and so on.

23

https://docs.aws.amazon.com/redshift/latest/dg/materialized-view-refresh-sql-command.html

• Window functions.
• A query that uses temporary tables for query optimization, such as opti-

mizing common sub-expressions.
• Sub-queries in any place other than the FROM clause.
• External tables referenced as base tables in the query that defines the

materialized view.
• Mutable functions, such as date-time functions, RANDOM and non-

STABLE user-defined functions.

In addition, as we’ve seen, when a refresh is issued on an incremental refresh
materialized view after a vacuum on any of the tables it uses, a full refresh
occurs anyway, and furthermore, unless you are manually issuing VACUUM on the
table underlying the materialized view, the only vacuum work being performed
on that table is that from automatic background vacuum, which I think running
so infrequently it is negligible, and finally, there’s an overhead of one column
plus one column per table used in the materialized view SQL.

All in all, I think incremental refresh is a complete non-starter and in fact should
specifically be avoided. It is in the first place very limited in the SQL it permits,
and then we also find the implementation is even more than problematic - it’s
harmful, because of the lack of vacuum.

System Tables
Tucked away in the documentation for one of the system tables which holds
information about materialized views, STV_MV_INFO, we discover two columns
of particular interest, the first of which is is_stale, an char(1), which sayeth
the docs;

A t indicates that the materialized view is stale. A stale material-
ized view is one where the base tables have been updated but the
materialized view hasn’t been refreshed. This information might not
be accurate if a refresh hasn’t been run since the last restart.

In other words, this column has only ambiguous information about whether or
not a materialized view is up to date; you have to perform an update to initialize
the information in this column.

I wanted to write a view which shows users information about their materialized
views, and of course one very useful piece of information is whether or not the
materialized view is up to date. I can’t show that information, because the only
source is this column, and I can’t know if this column is accurate or not, and
I do not want to require and depend upon the users reading the docs to avoid
being misled (something STV_MV_INFO is it seems entirely happy with).

Then, next, we have the column state, an integer, which the docs have holding
the following values;

• 0 – The materialized view is fully recomputed when refreshed.
• 1 – The materialized view is incremental.
• 101 – The materialized view can’t be refreshed due to a dropped

column. This constraint applies even if the column isn’t used

24

https://docs.aws.amazon.com/redshift/latest/dg/r_STV_MV_INFO.html

in the materialized view.
• 102 – The materialized view can’t be refreshed due to a changed

column type. This constraint applies even if the column isn’t
used in the materialized view.

• 103 – The materialized view can’t be refreshed due to a renamed
table.

• 104 – The materialized view can’t be refreshed due to a renamed
column. This constraint applies even if the column isn’t used
in the materialized view.

• 105 – The materialized view can’t be refreshed due to a renamed
schema. |

We see that the information about the refresh type (full or incremental) is con-
flated in this single column with information about failures (underlying tables
or columns being altered) and so when there is a failure, it is no longer possible
to know the refresh type of the materialized view.

How am I supposed to make a view on top of this, showing the refresh type?

(Moreover, as we saw earlier, the design of materialized views is such that in-
cremental refresh views sometimes anyway will issue full refreshes, so this can
never be a reliable indicator anyway.)

25

Conclusions

Materialized views are implemented as a table, a normal view and a procedure.

When CREATE MATERIALIZED VIEW is issued, Redshift actually issues a number
of SQL commands, creating the table, the view, and the procedure. The view
is presented to the user as the materialized view; it simply points at the table.
The procedure is used to implement refresh, with REFRESH MATERIALIZED VIEW
calling the procedure.

The table underlying the materialized view is created by the CREATE TABLE AS
command. This is why it is not possible with materialized views to specify
column encodings. I am of the view the encoding choices made by Redshift are
extremely poor (indeed, in some cases, nonsensical) and as such many columns
are experiencing no compression at all.

For any given materialized view, Redshift by examining at creation time the SQL
of the materialized view determines whether full refresh or incremental refresh
will be used. Redshift prefers incremental and will choose it where possible, but
to be possible, a very extensive list of SQL functionality cannot be used in the
materialized view SQL.

When an incremental refresh occurs, the procedure uses the table system
columns deletexid and insertxid, which are in Redshift not available to
normal users (but they are in Postgres), to figure out which rows to delete
and which rows to insert, with an additional column per table used by the
materialized view being created in the underlying table to store this information.
Materialized views using full refresh have no extra columns.

As such, when a VACUUM (manual or automatic) of any of the tables used by the
materialized view occurs, it forces a full refresh, as VACUUM resets the values in
the deletexid and insertxid columns of the vacuumed table and so messes
up the book-keeping information held by the materialized view.

When a full refresh occurs, either by the refresh occurring on a materialized
view using full refresh, or an incremental refresh running as a full refresh due to
VACUUM, the procedure, which implements refresh, and here remembering that
all SQL inside a procedure is inside a transaction, creates a new table, populates
it, renames the old table out of the way, renames the new table to the name of
the old table, re-points the view at the new table and drops the old table. A
VACUUM is not required, since the table is brand new and then populated by a
single insert.

26

When an incremental refresh occurs, the table underlying the materialized view
experiences an insert and then a delete, and as such after refresh requires
VACUUM.

Materialized views cannot directly be vacuumed. The vacuum command will
run, it will report no errors, and it will return the normal VACUUM info message,
but it will do no work.

The table underlying the materialized view can be vacuumed, but the name of
this table is not normally available. It can only be found by inspecting the SQL
commands issued by Redshift to implement CREATE MATERIALIZED VIEW.

The only other source of vacuum for the underlying table is whatever comes
from auto-vacuum. I have not yet produced a white paper on auto-vacuum,
so this is has not been investigated, but I and other admin think it runs so
infrequently that it is ineffectual.

Note though that when an incremental refresh materialized view is forced to
perform a full refresh due to one or more of the tables it uses being vacuumed,
the full refresh will produce a new, freshly populated table, which is inherently
fully ordered, and so “reset” the underlying table.

Materialized views can be refreshed manually, by issuing the REFRESH
MATERIALIZED VIEW command, or they can be created such that Redshift takes
responsible for automatically issuing refresh, as and when it sees fit.

On a completely idle two node dc2.large cluster, a materialized view with
full refresh pointing at a one column table with exactly ten full blocks of data
typically takes 55 seconds before the first auto-refresh occurs.

When the same setup has a single new row being inserted once per second, the
time before the first auto-refresh varied from a low of 54 seconds to a high of
1295 seconds (twenty-one minutes).

The algorithm for refresh is not published, so the factors involved are not known,
and it is likely to be undergoing ongoing undocumented, unannounced change.

With regard to all of the above, I hold the following points to be true;

1. Auto-refresh cannot be used, in part because the refresh times are so
variable, but mainly because the algorithm is not defined, is likely to be
complex, and where real-life is always far more complex than such an algo-
rithm, quite possibly flawed, and, most critically, is sure to be undergoing
ongoing undocumented, unannounced change; you cannot knowingly build
a correct system when it contains black boxes controlled by third parties.

2. Incremental refresh, because of its weaknesses regarding vacuum, should
specifically be avoided.

3. All refresh then must be full refresh, which has to fully regenerate all rows.

4. The impact upon performance of the poor encoding choices made by Red-
shift is very large.

This leaves then materialized views as full refresh and manual refresh only, which
is identical to manually maintaining pre-computing results, except that with
materialized views, column encodings cannot be chosen, leading to a very large

27

loss of performance, and, most critically of all, materialized views only offer
on refresh full regeneration of all pre-computed results, where-as manually pre-
computing results allows you to perform an incremental insert only, which is
often all that is required.

The ETL work for both is the same, an initial statement to create the mate-
rialized view or the table holding manually pre-computed results, and then a
statement to perform refresh, which is issued by the ETL system at the appro-
priate moment.

All in all, then, I can actually see no use case for materialized views at all. As
things stand, they are always inferior to manually pre-computing results.

28

Unexpected Findings

When you investigate Redshift, there are always unexpected findings.

1. I ran into so many intricate and perplexing problems with STL_QUERYTEXT
that in the end, once I got to the third round of debugging, I abandoned
the effort to perform the necessary pre-processing to the query text being
searched for so that it would match the rows recorded in STL_QUERYTEXT.

For now, I am for queries I need to find pre-processing the SQL before
issuing it, to reduce all contiguous white space to one white space, remove
all newlines, etc, so that I avoid most of the bugs in STL_QUERYTEXT and
can find the queries by their text.

This doesn’t work as a proper solution - what happens if you have strings
with whitespace in - but it works for the queries I need to search for
in this script. I intend and need now to produce a white paper on
STL_QUERYTEXT to figure out all the problems and solutions to them, al-
though I have a nasty suspicion right now it may in fact be impossible to
find all queries in that table (I suspect you end up with different query
texts which are indistinguishable from each other once they’re been placed
into STL_QUERYTEXT).

2. A VACUUM, manual or automatic, on any table used by an incremental
refresh materialized view, caused the next refresh on that materialized
view to be a full refresh.

3. The implementation of materialized views uses the per-table system
columns insertxid and deletexid, access to which is - but by no means
at all should or needs to be (Postgres allows access) - forbidden to users.

4. Normal views in PG_VIEWS for their SQL store the SQL of the statement
which forms the view. This statement must be mated with a CREATE VIEW
command to create a view.

Materialized views, however, which are also shown in PG_VIEWS, and which
have on the face of it cannot be distinguished from normal views, for their
SQL store the entire ’CREATE MATERIALIZED VIEW‘ command.

Views and materialized views then must be handled differently, are how-
ever conflated into the same view, and require painful SQL to distinguish
between (using STV_MV_INFO, which only lists materialized views, to figure
out which rows in PG_VIEWS are views and which are materialized views).

29

5. If an object name is too long (such as a table or view name), I think
Redshift used to throw an error. Now Redshift, with an info message,
truncates the overly-long name to the maximum supported length.

I think this is staggeringly vast mistake. If something is wrong, it’s in-
finitely better to alert the user and stop. If you carry on, the user is likely
not to be expecting this (since they had no idea there were making a mis-
take in the first place) and is likely to get caught out later on - which is
the more expensive route to discovering error.

30

Revision History

v1
• Initial release.

v2
• Fixed a spilling errar.

v3
• Changed to Redshift Research Project (AWS have a copyright on “Amazon

Redshift”).

v4
• Added “About the Author”. made site name in title a link, and made each

chapter start a new page.

v5
• Web-site name changed to “Redshift Observatory”.
• Updated links from redshiftresearcproject.org to redshift-observatory.ch.

v6
• Removed “About The Author”.
• Added Slack join URL.

31

Appendix A : Raw Data
Dump

The document processing software is having trouble with this appendix, as it is
mainly JSON.

As such, I’ve had to here give a link to the appendix as a separate document,
which is here.

32

https://www.redshift-observatory.ch/white_papers/downloads/materialized_views_appendix_a.md

Appendix B : AZ64
Encoding

I’ve not yet produced a white paper investigating the encoding choices Redshift
makes (there are three or so different times and places where Redshift makes
such choices, but to provide some evidence here, the Results contain a table
which has one column for every data type, and a materialized view which is
based on this table, and what we see is;

Data Types Encoding
bool, float4, float8 raw
char, varchar lzo
everything else az64

(Note geometry and hllsketch are both raw because that’s the only encoding
they support.)

There’s no reason for any data type to be raw. It’s simply a lost opportunity to
reduce disk space use.

I’ve made, but not yet published, a white paper which benchmarks encoding
and decoding, and the information I provide now comes from that research.

Regarding char and varchar, there are two general purpose encoders, lzo and
zstd, and a general purpose encoder is indeed the correct choice for arbitrary
strings.

Of these two however, lzo is fast to encode and slow to decode, which is not
what you want, where-as zstd is slow to encode but fast to decode, which is
what you want, and compresses considerably more than lzo.

In short, lzo should only be used when you have data which is written more
often than it is read, which is almost never going to be the case with a sorted
column-store database; it is the wrong choice as the default, and in fact it is
basically obsolete. It has been superseded by zstd, which is not too surprising
since the basis of lzo was developed in 1977 and zstd was developed in 2015,
and zstd should be the encoder used - but it is not.

Finally, we come to AZ64, about which I am really quite angry.

33

Each encoder implements a different compression method and each method
works well with and only with data which possesses certain characteristics, and
works badly and often fabulously badly with data which does not possess those
characteristics.

For example, run length encoding works well on data where there are many
repeating values, row after row, and works very badly when this is not the case.

In short, to pick an encoder, you must know how it works.

Amazon have never published how az64 works and as such, quite simply, you
can never use it, because you have no idea if it is going to work well or not given
the data you have. It is utter lunacy users are placed in this position.

The only information Amazon ever published was a blog post, written by some-
one who was either incompetent or deliberately misleading readers.

The post compares az64 to raw, lzo and zstd and makes various claims about
how az64 is much faster and compresses much better.

I quote;

• Compared to RAW encoding, AZ64 consumed 60–70% less stor-
age, and was 25–30% faster.

• Compared to LZO encoding, AZ64 consumed 35% less storage,
and was 40% faster.

• Compared to ZSTD encoding, AZ64 consumed 5–10% less stor-
age, and was 70% faster.

These figures are true for and only for extremely carefully selected data, and so
are absolutely misleading to be given as generally true; the problem is that az64
looks to me in my research to be a runlength-type encoder 2, while the other two
are general purpose encoders, and as such, these encoders cannot be compared
- it’s an apples and oranges situation - and to do so, without explaining that
az64 is not a general purpose encoder, is either flatly incompetent or culpable.

Indeed, by making this comparison, readers are led to believe az64 is a general
purpose encoder, because no one in their right mind would directly compare
different types of encoders without informing the reader.

To put it explicitly, consider a runlength type encoder. It works staggeringly
well when data consists of long runs of the same value, and staggeringly badly
- making the data larger than the original, in fact - when the data does not
consist of long runs of the same value.

Now consider a general purpose encoder; it will normally produce about 30% to
40% compression, always, no matter what the data.

You cannot make - as has been done - a blanket statement that the runlength
encoder compresses better and faster than the general purpose encoders, because
it is simply not true. The performance of each encoder depends profoundly on

2A Redshift dev informed me az64 is in fact delta based. I’ve not yet conducted the testing
to prove this, so all I can say is from the testing I have done so far on encodings it looks
runlength-like, but that testing did not exclude the possibility of being delta-like.

34

https://aws.amazon.com/about-aws/whats-new/2019/10/amazon-redshift-introduces-az64-a-new-compression-encoding-for-optimized-storage-and-high-query-performance/

the data being compressed, and with some data one encoder is better or much
better, and with other data, the other encoder is better or much better.

Coming back then to the encoding choices made by Redshift, the use of az64 as
the default for all non-string columns, whether it is runlength or delta, is in my
view absolutely and categorically wrong, because the data being compressed is an
unknown, except that the majority of columns are not going to be sorted, and
so will not possess the characteristics needed for either of these two methods to
work well (and indeed, by not being sorted, will in fact possess the characteristics
needed for these two methods to perform badly).

Just to make it clear how flawed the encoding selection algorithm is, note both
runlength and delta encoders should never be used on random data - it’s the
worst kind of data for them both - but Redshift uses az64 as described above,
for all non-string columns, on interleaved sorted tables.

Interleaved sorting makes the values in columns essentially random, and az64 I
see from my own testing as expected in this situation produces zero compression.
This isn’t just the wrong choice, it’s dribbling madness. No one is thinking
about this. No one is checking the outcome of these choices. These are not well
informed, carefully selected choices made by an expert.

I may be wrong, but what I suspect has happened is that where az64 is propri-
etary, an in-house AWS encoder, internal politics have pushed for it to be used,
and so the wrong technical choice has been taken for political reasons.

We then come to see a later blog post, where we see that;

Five months after launch, the AZ64 encoding has become the fourth
most popular encoding option in Amazon Redshift with millions of
columns.

I suspect this is true, but it’s because az64 has been made the by far the
most common default encoding choice made by Redshift, and because people
have been misled by the blog post comparing az64 to general purpose encoders,
and so all of the people using it, either by default or by their own choice, are
very likely using the wrong encoder for their data, quite likely are getting zero
compression, and this is contributing to making performance poor and erratic,
and this is contributing to people leaving for Snowflake.

Coming back then from this journey into encoding choices, I argue then that
the encoding choices made by Redshift are no good, and these choices are used
for materialized views, and this alone is enough to mandate that materialized
views are never used, because encoding choices are critical for performance.

35

https://aws.amazon.com/blogs/big-data/improved-speed-and-scalability-in-amazon-redshift/

Redshift Observatory Slack

I’ve started up a Redshift Slack.

Join URL is;

https://join.slack.com/t/redshiftobservatory/shared_invite/zt-2vm3deqis-
hc6h4GMDcG6Gs7~IECQNuQ

36

https://join.slack.com/t/redshiftobservatory/shared_invite/zt-2vm3deqis-hc6h4GMDcG6Gs7~IECQNuQ
https://join.slack.com/t/redshiftobservatory/shared_invite/zt-2vm3deqis-hc6h4GMDcG6Gs7~IECQNuQ

	Introduction
	Test Method
	Auto-Refresh
	Creation and Refresh
	Column Encodings
	Additional Columns
	VACUUM

	Results
	dc2.large, 2 nodes (1.0.29551)
	Auto-Refresh Delay (Count Only)
	Auto-Refresh Delay (Count With Insert)
	Materialized View Column Encoding Choices
	VACUUM Source Table
	VACUUM Materialized View Underlying Table
	Materialized View Full Column List (One Source Table, Full Refresh)
	Materialized View Full Column List (Two Source Tables, Full Refresh)
	Table, View and Proc Counts (B/A CMV, Full Refresh)
	Materialized View Text From pg_views (Full Refresh)
	CREATE MATERIALIZED VIEW (Full Refresh)
	REFRESH MATERIALIZED VIEW (Full Refresh)
	Materialized View Full Column List (One Source Table, Incremental Refresh)
	Materialized View Full Column List (Two Source Tables, Incremental Refresh)
	Table, View and Proc Counts (B/A CMV, Incremental Refresh)
	Materialized View Text From pg_views (Incremental Refresh)
	CREATE MATERIALIZED VIEW (Incremental Refresh)
	REFRESH MATERIALIZED VIEW (Incremental Refresh)

	Discussion
	Implementation
	Creation
	Refresh

	VACUUM
	VACUUM Induces Full Refresh
	Materialized Views Are Only Auto-Vacuumed

	Column Encodings
	Auto-Refresh
	Additional Columns
	Full vs Incremental Refresh
	System Tables

	Conclusions
	Unexpected Findings
	Revision History
	v1
	v2
	v3
	v4
	v5
	v6

	Appendix A : Raw Data Dump
	Appendix B : AZ64 Encoding
	Redshift Observatory Slack

