
Users, Groups, Roles and Privileges

Max Ganz II @ Redshift Observatory

1st February 2023

https://www.redshift-observatory.ch

Abstract

In Postgres, roles replaced users and groups (both became roles). Roles in
Redshift are different, and do not replace users or groups but exist alongside
them as a third, separate, first-class type. Both roles and groups can be granted
privileges, with roles then being granted to users, or users being added to groups,
these two operations being identical in effect. Roles however can also be granted
to roles, allowing a hierarchy of roles to be constructed. Along with roles come a
new set of Redshift-specific privileges, which can be granted to and only to roles
(roles can also be granted the existing Postgres privileges). These new privileges
are unlike the existing Postgres privileges (which are per-user, per-object) as
they are per-user only; a user, once holding one of the new privileges (which
must be via a role), holds that privilege everywhere, always, in all databases;
the new privileges are essentially fragments of the super user. Finally, note the
documentation for roles is particularly egregious, and that there are a few of the
new privileges which are properly tantamount to granting super user, as they
allow a user to elevate themselves to super user.

Contents

Introduction 3

Privilege Mechanisms 4

Users 7

Groups 10

The Group-like Object Public 12

Roles 14

Postgres Privileges 19
Database . 19
Function . 19
Language . 19
Procedure . 20
Schema . 20
Table . 20
View . 21

Redshift Privileges 22

Default Privileges 29

Conclusions 31

Credits 33

Revision History 34
v1 . 34
v2 . 34
v3 . 34
v4 . 34
v5 . 34
v6 . 34
v7 . 34
v8 . 35
v9 . 35

1

v10 . 35
v11 . 35

Redshift Observatory Slack 36

2

Introduction

Redshift is derived from Postgres and by this inherited the Postgres privileges
mechanism.

The only change made to this mechanism occurred recently (in about 2023,
IIRC), where a drop privilege was added.

Roles have now been added to Redshift, but they are not Postgres roles -
pg_roles doesn’t exist, for example, and so the name is rather misleading.
Think of them as “Redshift roles”, and start with a blank slate.

In Postgres, roles superseded and replaced both users and groups. Users and
groups under the hood both became roles, with the existing commands for users
and groups under the hood now in fact making roles (and the docs being clear
that this is the case).

This is not the case in Redshift. Roles in Redshift are not a port or implementa-
tion of roles in Postgres; Redshift now has users, groups and a new mechanism
named “roles”, all as separate, co-existing and interacting first-class entities,
and, critically, roles have in fact introduced a separate, second privileges mecha-
nism, entirely different in its nature and implementation to the original Postgres
mechanism.

This document then examines, describes and compares, in detail, the existing
Postgres privileges mechanism, the new Redshift privileges mechanism, and their
interactions.

3

Privilege Mechanisms

There are in Redshift a number of different types of object - databases, schemas,
tables, functions, and so on.

Each object behaves and is used in certain ways; for example, you can issue
SELECT on a table but not on a database, so a privilege to permit or refuse
SELECT exists for (and only makes sense for) a table.

We find then naturally emerging from the set of different types of objects a set
of privileges, where privileges make sense typically for only one or two types of
object (you might well think it would only ever be that a given privilege made
sense for one type of object, but in Redshift (and Postgres) there are quite
often pairs of objects which are very similar in their nature - tables and views,
and functions and procedures, for example - such that they share most of their
privileges).

Now, in Postgres (up to version 8.1), and so also in Redshift (as it derived from
Postgres 8.0), privileges are arranged on the basis of a privilege for each action,
which is assigned per object, per user; user Frodo has privilege usage on schema
ring.

To help with organizing privileges, there exists also the concept of groups. Users
can belong to groups, and both users and groups can hold privileges. A user held
their own privileges, plus those of any group they were a member of. Groups
could not be members of groups.

With Postgres 8.1, users and groups were done away with, and there were then
only roles. A user is really a role; a group is really a role. The only property
that makes a user special is that it’s a role which is allowed to log into the
server. So now it’s roles, all the way down - a role can belong to a role, a role
can hold privileges, and a role holds the privileges of any roles it belongs to. All
the existing operations on users and groups, although they are for compatibility
still supported, actually now perform operations on roles, and this is explained
in the documentation.

This is lovely - pure, simple, utterly flexible, easy to reason about.

We now however find something also and unfortunately called “roles” in Red-
shift.

As has been stated, these are not Postgres roles. To my eye, what we see here
is what I think we often see in Redshift, which is implementation constrained

4

by a large, legacy code base : in other words, something big and new bolted on
the side rather than integrated into the whole (and then presented with a hefty
dose of “look at our amazing new functionality” hype from AWS, combined with
docs which tell you approximately nothing over the course of about 50 pages
and leave everything to the imagination).

In Redshift, we still have users and groups, and they remain separate, first-
class types in the database, but now we have roles as well. Users are not roles,
groups are not roles, the Postgres system tables for roles have not turned up
in the system tables; there is no pg_roles. There is now a pg_role, but it’s
different to the Postgres system table for roles, and there are a couple of extra,
non-Postgres tables, to go along with it.

Roles in Redshift are a collection of privileges, just like a group, and roles can
be granted to roles and - and this is actually the biggie - there are a set of
new privileges, which can only be granted to roles; not to users, not to groups,
and these new privileges are in a critical ways fundamentally unlike existing
privileges.

Really, roles in Redshift are actually about the new privileges and this new
privileges mechanism. The “role” part of this is pretty much inconsequential :
in terms of organizing privileges, a role is a group, excepting that a role can also
be granted to a role. That’s it.

From now on, the previously existing privileges I’ll call Postgres privileges, or
Postgres-style privileges, and the new privileges I’ll call Redshift privileges or
Redshift-style privileges.

For a user to obtain a Redshift privilege, the privilege must be granted to a role,
and that role granted to the user. Roles cannot be granted to groups.

Redshift privileges, in stark contrast to Postgres privileges, are global; when a
user is granted (which must be via a role) a Redshift privilege, that privilege is
always active, on all objects affected by that privilege, in all databases, always,
regardless of anything.

With Postgres privileges, grants are per action (the privilege granted), per ob-
ject (database, table, function, what-have-you), per user (directly or via group
membership).

With Redshift privileges, grants are per action (the privilege granted), per user
(not directly but via roles only), and that’s it.

So for example there is a Redshift privilege, CREATE TABLE. If we grant this
to a role, and the role we then grant to user Gandalf, user Gandalf can now
create tables in all schemas, in all databases, everywhere, always and regardless
of anything else.

These new privileges are essentially fragments of the super user.

Finally, note roles can also be granted Postgres privileges in the usual way, just
as if they were groups.

What this means in principle (but quite possibly not in practise, as we will see,
due to implementation concerns) is that roles have superseded groups; every-

5

thing you do with groups you can do with roles, and roles give you something
new (the new Redshift privileges).

6

Users

In Redshift (and Postgres), users are a cluster level concept, not a database
level concept; you do not get a new set of users per database. There is and only
is one set of users, no matter how many databases you have.

Users, under the hood, are uniquely identified by their user ID, which is an
int4. This increments when a new user is made, and so every user always has
a unique ID.

However, from the point of view of a human using Redshift, users are uniquely
identified by a name, which is an arbitrary string, which is up to 127 bytes (and
note that’s bytes, not characters) of UTF-8. All users must at any given time
have a unique name, but names which were used in the past but are no longer
in use, can be re-used.

Note however there are places in the system tables where users are referred to
by name only - their user ID is not provided - which is a problem for historical
data (the user name could have been re-used), and what’s more, it’s often the
case that the full user name is not given - for example, stv_sessions indicates
the user by the first 50 bytes only of the user name.

As such, in the Redshift system tables, to my knowledge, 50 bytes is the longest
safe user name; anything more and you have the potential to run into problems
where you cannot always know which user is being referred to in some system
tables.

(This issues crops up with particular strength and pervasiveness for database
names; often database names, which are also in principle 127 bytes (not charac-
ters) of UTF-8, have their first 32 bytes only stored.)

When you come to delete a user, Redshift (like Postgres) will not allow the user
to be deleted unless that user is utterly bare of everything - owns no object,
holds no privileges, nothing.

For the user to be deleted there can be no traces of that user in the database
at all and the drop user command is not able to perform any of this work -
it’s all down to you. This necessity to rid the database completely of a user,
prior to dropping the user, is how Redshift/Postgres ensures there’s no confusion
whereby something, somewhere, still references the deleted user’s user ID.

It’s also a moderate to large pain in the neck for you, when you come to delete a
user, you need to go through the system table for every type of object (schemas,
tables, functions, etc) and look to see if anything in there is owned by that user -

7

and in fact, you need to enumerate all their privileges and this something which
until very recently Redshift could not do, which made the situation problematic;
you needed to drop a user, but the user holds privileges, but you couldn’t find
out what those privileges are. Crazy, and it was like that for ten years.

As such, what I often saw was that users were not deleted, but rather simply
have their account modified so they can no longer log in (and their password
changed for good measure). This is not good practise and in time leads to
confusion and problems.

There is in Postgres (and so in Redshift) the concept of ownership for objects
(tables, views, functions, what-have-you). Each object has one and only one
owner, which is a user (groups and roles cannot own objects). When a user
creates an object, that user is automatically the owner of that object. Ownership
of an object can be changed, but it always begins as the creating user.

The owner of an object completely bypasses the privileges mechanism, with
regard to that object only.

The owner of an object can then revoke from themselves every single privilege
that exists upon an object, and still then be able to perform every possible
action with that object, because the privileges the owner holds are completely
irrelevant as they are not being examined in any way whatsoever for the owner
of the object.

Now, in Redshift there are three types of user; normal users, super users, and the
root user, where there is a single root user, which has the name rdsdb, which
is owned and operated by AWS.

The root user is God, and can do anything - you might have been thinking that
the super users are God and can do anything, but this is in fact not the case;
super users are minor deities only.

All of the built-in system objects, so the system tables, all the functions Redshift
comes with, and also a lot of the background queries Redshift constantly runs,
all are owned and issued by rdsdb, the root user, and so you cannot touch them,
even if you are a super user.

(It’s like Android. You do not have root on your phone. On Redshift, you also
do not have root.)

A lot of the system tables are like this - access is only permitted through views,
which control and constrain what you can see. This is a problem in some cases -
for example, the only way to know if a table has the auto sort-type is by looking
at svv_table_info, which is a big, costly view (9.5kb of text) which I expect to
be buggy, and that view, last I looked, showed information only for tables which
had one or more rows; it did not show information for empty tables. Nothing
you can do to work around that problem, because root owns the actual tables
under the view, and you’re not allowed to look at them directly (which to my
eye, seems like hubris; as if the devs would never make mistakes).

Moving on, we next come to super users, who normal users in every respect
except one; they always bypass the privileges mechanism, for all objects. Super
users can perform any operation, on anything, always - privileges are not being

8

examined - except for objects owned by rdsdb, which cannot be touched in any
way, shape or form.

Finally, normal users are the plebs working the fields. Normal users are limited
in their operations by the privileges mechanism, except for objects they them-
selves own. On objects they own, normal users are the same as super users; they
can perform any operation, always.

9

Groups

In Redshift (and Postgres), groups are a cluster level concept, not a database
level concept; you do not get a new set of groups per database. There is and
only is one set of groups, no matter how many databases you have.

Groups, under the hood, are uniquely identified by their group ID, which is an
int4. This increments when a new group is made, and so every group always
has a unique ID.

From the point of view of a human using Redshift, groups are uniquely identified
by a name, an arbitrary string, which is up to 127 bytes (not characters) of
UTF-8, and all groups must at any given time have a unique name, but names
which were used in the past but are no longer in use, can be re-used.

Groups are a pretty superficial concept in Redshift (and Postgres). The sole
purpose of groups is to make arranging and organizing privileges easier.

Groups can be granted privileges, and users can belong to groups, and a user
receives the privileges of a group if that user is a member of that group (which
can lead to a user can receiving the same privilege on the same object more
than once, which does no harm).

The only place in the system tables that you ever see groups, either by their ID
or name, is in the system table pg_group, which lists groups and their members,
and in the ACL columns, which are found in the system tables which describe
objects to which privileges apply - such as tables, functions, databases, etc -
and describe for each object which privileges are granted to who (and here the
“who” can be a group name).

The pg_group system table has one row per group, and in that row uses an
array to record the set of users in that group. Arrays are leader node only
functionality and so this table - if you use the membership column - is leader
node only. As it is, this table has only three columns; the group ID, group name,
and membership array, so it’s hard not to use the membership array.

The fact that group membership info is leader node only is why you see so
little information available about Redshift on a per-group basis; because it’s
impossible to issue queries which link up group membership with the system
tables which carry worker node information (as those tables typically use worker
nodes).

Groups cannot own objects; only users own objects.

10

Groups cannot be members of groups; only users can be a member of a group.

So a group then is simply a set of privileges.

In the usual case, in real world systems, you find many users need the same
set of privileges - maybe there are many BI developers, or a number of cluster
admin, or what-have-you; there are distinct sets of users which are identical in
the privileges they need.

Standard best practise is to never grant privileges to users, as this ends up being
high maintenance and error prone (particularly so prior to the capability to see
the privileges granted to any given user or group), but instead to create one
group per distinct set of users, grant those groups the privileges needed by their
set of users, and add or remove users to and from groups, in accordance to the
work the users are doing.

In short, groups get privileges, users get groups. Users never get privileges.

11

The Group-like Object
Public

Public is not a group.

If you look in pg_group, you will not find a group named public, and as such,
public has no set of members.

Every user is automatically, always and irrevocably a member of what I call
“the group-like object public”. You cannot remove a user from the group-like
object public; there is no group public.

You can grant privileges to public, by using its name where you would use a
group name, and by doing so, you grant those privileges to every user in the
cluster (because all users are always part of the group-like object public).

In system tables which describe objects to which privileges apply, such as tables
and schemas, you will find an ACL column (access control list), which describes
for each object which privileges are granted to who (I try not to write “whom”,
as I consider it obsolete grammar), and here the “who” can be the name public,
and this is the and the only place the name public is found.

Now, Redshift (and Postgres) ship with thousands of functions, many of which
are an inherent part of SQL, such as min() and max(), the type conversion
functions (which we normally access via the :: operator but which are in fact
functions being called under the hood), all of the PostGIS functionality Redshift
implements, and so on and so on.

All of these functions are available for everyone to use as execute privileges on
functions are granted to public.

I have heard of systems where admin, I believe for security purposes, want to
delete public. You cannot directly do this - public it is not a group, but an
inherent part of Redshift/Postgres, so there is nothing for you to delete - the
nearest you can get is to revoke all privileges from public from all objects, which
has the effect of making the automatic membership of public wholly without
effect.

Actually doing this is problematic (I’d go further and say nightmarish).

Firstly, until recently, there has been no viable method by which to enumerate
the privileges granted to public. If you can’t know what’s been granted, you

12

can’t know what to remove, or check that all privileges have in fact been removed.
That alone makes it impossible.

Secondly, if you do this, and revoke all privileges granted to public, you will
make it impossible for people to use SQL, because so much functionality will
have been removed from them. You would need to figure out and grant thou-
sands of privileges to built-in functions to a group of your own, to which you
add users, so that users can use functions essential to writing SQL, which is
essentially the same as leaving public as it is.

One final note.

When any user creates a function or a procedure (internally, Redshift/Postgres
pretty much thinks these are the same thing - there is only one system table,
pg_proc, for both), the execute privilege on that function or procedure is
automatically granted to public.

You can’t stop this, so if you are trying to keep public stripped of grants, you’d
also need to remove these automatically granted privileges on an ongoing basis.

13

Roles

Roles in Redshift are not the same as roles in Postgres.

In Postgres, it used to be (up to version 8.1, and remember here Redshift derives
from 8.0) there were users and groups, and these were separate, first-class types
in the database. Users could belong to groups, and both users and groups could
hold privileges. A user held their own privileges, plus those of any group they
were a member of. Groups could not be members of groups.

With Postgres 8.1, users and groups were done away with, and in Postgres there
were only roles. A user is really a role; a group is really a role. The only
property that makes a user special is that it’s a role which is allowed to log
into the server. So now it’s roles, all the way down - a role can belong to a
role, a role can hold privileges, and a role holds the privileges of any roles it
belongs to. All the existing operations on users and groups, although they are
for compatibility still supported, actually now perform operations on groups,
and this is explained in the documentation.

Lovely - pure, simple, utterly flexible, easy to reason about.

We now however find something also and unfortunately called “roles” in Red-
shift.

As has been stated, these are not Postgres roles. To my eye, what we see here is
what I think we often see in Redshift, which is implementation constrained by a
large, legacy code base : in other words, something bolted on the side, typically
with a very large dose of misleading marketing.

In Redshift, we still have users and groups, and they remain separate, first-class
types in the database, but now we have roles as well. Users are not roles, groups
are not roles, the Postgres tables for roles have not turned up in the system
tables; there is no pg_roles. There is now a pg_role, but it’s different to the
Postgres system table for roles, and there are a couple of extra, non-Postgres
tables, to go along with it.

None of these new system tables are user accessible, which is great for AWS
and their culture of secrecy, but bad for users, because it means we’ve stuck
with whatever system tables (views, really) the devs put on top of these tables,
and the devs are not good at system tables - and indeed, as we will see, they’ve
messed this up in a couple of ways.

Roles in Redshift are a collection of privileges, just like a group, but roles (unlike
groups) can be granted to roles and - and this is the biggie - there are a set of

14

new privileges, which can only be granted to roles; not to users, not to groups.

What this means in principle (but quite possibly not in practise, as we will see,
due to implementation concerns) is that roles have superseded groups; every-
thing you do with groups you can do with roles, and roles give you something
new (the new Redshift privileges).

So rather than managing privileges by creating groups and granting privileges
to groups, and then adding or removing users from groups, we now manage
privilege by creating roles and granting privileges to roles, and then granting or
revoking roles from users, and also potentially granting roles to roles, allowing
a hierarchy of roles to be built up.

What’s holding me back from roles is basically the question of whether or not
I trust the implementation to be correct. I’m pretty confident groups, users
and Postgres-style privileges work. I’m not confident about anything new from
Redshift, because I’ve repeatedly seen over many years that testing is minimal or
seemingly non-existent and this lack of confidence when we’re looking at access
controls which can then involve PII and legal obligations is a concern.

There are other issues.

The implementation of roles is not Postgres-compliant or backwards compatible
(note here the Postgres implementation of roles is backwards compatible, and
so existing Postgres tooling continued to work when roles were introduced) and
so existing tooling, either native or from Postgres, which uses the ACL columns
to understand group privileges, will have no knowledge of roles at all.

Regarding the use of sub-roles, I could be completely wrong, but I can’t really
see much mileage in this. The number of groups/roles should be kept as small
as possible, to make them easy to reason about, and I think there usually is
only a need for a very few groups or roles - there usually are only a few distinct
sets of users which need different privileges - so I can’t see a need for this extra
organizational capability. Life I would say is usually simple enough that single-
level groups (or single-level roles) is enough.

The new Redshift privileges are much more consequential, however - but now
it’s surprise time, or maybe not such a surprise; the way they are arranged and
the way you use them is completely different to how the existing privileges are
arranged.

What’s really interesting here is what we can see of the implementation.

Back in about 2019, almost all system tables were converted from being tables
to being views, with the underlying table no longer being accessible to users.

Part of the implementation of roles is to add code to every single system table
view.

Here’s the text for a system table svv_roles (I just happen to pick svv_roles
- all of the system tables have had the same code added to them).

(Please note the code you see here is nothing like the code you get from Redshift,
for this view; I have completely reformatted the code, moving it largely but not
quite fully (some adaptations to deal with the exigencies of this particular code)
to my own style, which makes it readable. I would note I’ve removed very large

15

numbers of unnecessary brackets, as well as unnecessary quoting of function
names, unnecessary casts and so on, which which makes me think the author is
an automated tool of some kind. Be aware also you cannot run the code here,
as the system tables pg_role and pg_identity are accessible only to the AWS
root user, rdsdb.)
select

pg_role.rolid as role_id,
pg_role.rolname::varchar(128) as role_name,
pg_identity.usename::varchar(128) as role_owner,
pg_role.externalid::varchar(128) as external_id

from
pg_role

join pg_identity on pg_identity.useid = pg_role.rolowner
where

pg_role.rolname !~~ '/%'
and pg_identity.usename !~~ 'f346c9b8%'
and
(

exists
(

select 1
from pg_identity
where pg_identity.useid = current_user_id and pg_identity.usesuper = true

)
or has_system_privilege(current_user, 'access system table')
or user_is_member_of(current_user, pg_role.rolname)
or current_user_id = pg_role.rolowner

);

Most the where clause is new code, and it’s there to implement roles.

Let’s walk through the where clause;

1. Show rows to the user where the role name does not begin with a forward
slash (which if you try to use it in a role name, is an invalid character).
This view is leader node only, so I think the use of not like where will
not invoke AQUA, which is a good thing (high initial cost, then multiple
queries needed to recoup that cost).

2. Show no roles owned by user f346c9b8.
3. If the user is a super user, show the row.
4. If the user is not a super user, but holds the Redshift-style privilege access

system table, show the row.
5. If the user is not a super user, and does not hold the Redshift-style privilege

access system table, but the user has the role granted to him, show the
row.

6. If the user owns the role, show the row.

So… observations.

It’s too much code and too much work - the actual code of the view is now
outweighed by the boilerplate. In some views its worse - in svv_role_grants
because of the way the view works the boilerplate code has to be present twice,
and so you have six lines of real code and about fifty lines of boilerplate, with

16

two extra joins and four extra selects.

The Redshift-style privilege access system table is implemented in view SQL
code; it has to be implemented correctly in every single view, and there are lots
of system table views. This, on the face of it, seems crazy; security requires
reliability - correct implementation, which in turn requires simple and compact
implementation, which is easy to test. Approaches which are risky are inherently
insecure. The code for security access should be in one place only, not at every
possible entry-point. I am also concerned here about the poor reputation of
Redshift for testing.

And now for a biggie; all of the system table views which now look like this have
been made leader node only.

This is because the has_system_privilege() and user_is_member_of() func-
tions are leader node only.

I think this is going to break a bunch of existing code out in the wild.

Finally, we can see that we see the Redshift-style privilege access system
table is also conferring the powers of syslog unrestricted; not only can
you now select from all views, but you also get to see all rows, not just your
own.

Moving on, we see as expected where this is unlike the Postgres implementation
of roles, role names are not showing in the ACL columns in system tables. The
only way to know about roles is via some new, Redshift-specific system tables,
such as svv_roles.

These new system tables, to my considerable surprise, do not show all rows to
a user with select on the table and syslog unrestricted - they only show
the rows owned by the user. This is not expected, and not consistent with prior
behaviour in all other system tables.

These system tables will only show all rows if the user holds the new Redshift
privilege, access system table.

I don’t know if this means the old security model is now lapsed, or if it’s an
oversight, or a blunder. It’s a problem, because the only way I can now grant
access to the rows in these system tables is by granting access to the rows in all
system tables. Previously, I could pick and choose exactly which system tables
I gave access to.

Finally, with Postgres-style privileges, the GRANT command provides the stanza
WITH GRANT OPTION. Normally, which is to say without WITH GRANT OPTION, a
user holds a privilege and so he can then perform the action permitted by the
privilege, and that’s it; the user could not grant that privilege to other users,
he could only use that privilege himself.

However, when a privilege is granted using WITH GRANT OPTION, the user then
additionally is permitted to grant that privilege to other users.

Roles have something akin to this, which is called WITH ADMIN OPTION, which
is present in the GRANT syntax when you’re granting a role. The docs however
have made a special effort to be especially opaque in this matter, providing and

17

only providing this one line of text to explain what option is for and how it is
used;

The WITH ADMIN OPTION clause provides the administration
options for all the granted roles to all the grantees.

So, the way it works is that being able to further grant a Redshift privilege is
not something which is granted to roles - it is granted to a user when the role
is granted to the user.

When you grant a role to a user, it’s then you indicate WITH ADMIN OPTION, and
this means that user now has the privilege to grant that particular role to other
users.

So it’s not the capability to grant to other users a particular privilege - it’s the
capability to grant to other users a particular role.

That’s a pretty powerful capability (and deserving far more than a single line of
incomprehensible documentation, especially given that we’re talking about the
security model for a database), because roles I suspect are generally going posses
at least a couple of Redshift-style privileges, and those privileges as we’ve seen
are global, everywhere and always, and also because a role can contain many
Postgres-style privilege, and the capability to grant those multiple Postgres-style
privileges is also being conferred, although, of course, only en bloc, as the user
can grant only the role, not the individual privileges which are granted to the
role.

The Postgres-style privileges, where they are a single privilege on a single object,
inherently minimize the capability being granted. The equivalent of roles with
Postgres-style privileges would be that you grant a bunch of privileges to a
group, and then grant a user the privilege to add users to that group - but this
capability, to add users to groups, is available only to super users. There’s no
Redshift-style or Postgres-style privilege to allow granting it to ordinary users,
which is a shame.

I would say that roles, and the Redshift-style privileges mechanism, are inher-
ently going to tend to be significantly more consequential when they go wrong,
than the Postgres-style privileges mechanism.

18

Postgres Privileges

So, there are almost all well known, and I’ve included them here for completeness.
Only the drop privilege is new, something added to Redshift in about 2023.

Object Privileges
Database create, temporary
Function execute
Language usage
Procedure execute
Schema create, usage
Table drop, insert, references, select, update
View drop, select

Database

Privilege Function
create The create privilege allows the user

to create schemas in the given
database.

temporary The temporary privilege allows the
user to create temporary tables in the
given database (which is to say, to
issue. create temp table). This
privilege is not needed to use CTEs.

Function

Privilege Function
execute The execute privilege allows the user

to execute the function.

Language

19

Privilege Function
usage The usage privilege allows the user to

create objects which use the given
language. It is not required to
execute objects in the given language.

Procedure

Privilege Function
execute The execute privilege allows the user

to execute the given procedure (which
includes functions).

Schema

Privilege Function
create The create privilege allows the user

to create objects (which is to say,
anything where a schema is a valid
concept sense - a function, procedure,
table or view - in the given schema.

usage The usage privilege allows the user to
perform actions on objects in the
schema. Without it, holding
privileges on objects in the schema is
meaningless, as you the user will not
be permitted to perform any actions
on objects in the schema.

Usage is a per-schema toggle, basically; when absent, it blocks all actions on all
objects in the schema, regardless of whatever privileges a user holds.

Table

20

Privilege Function
drop The drop privilege allows the user to

drop the given table. This is new,
introduced late 2022. It’s not fully
ramified - there’s no drop privilege for
say databases, functions, procedures;
just tables (and views, where tables
and views are treated as much the
same, under the hood).

insert The insert privilege allows the user
to insert rows into the given table.

reference The world’s least used privilege, ever.
The reference privilege allows the
user to create a foreign key constraint
in the given table, but not you must
also hold this privilege on the foreign
table, too.

select The select privilege allows the user
to select rows from the given table.

update The update privilege allows the user
to update rows in the given table.

View

Privilege Function
drop The drop privilege allows the user to

drop the given view. This is new,
introduced late 2022. It’s not fully
ramified - there’s no drop privilege for
say databases, functions, procedures;
just views (and tables, where tables
and views are treated as much the
same, under the hood).

select The select privilege allows the user
to select rows from the given view.

Remember that when you select rows from a view, the view will access the tables
it uses as if it were the owner of the view. If the owner has the privilege to
select from the tables, then you’re fine - and this is also how you use a view
to provide access to tables, without actually granting the privilege to select on
those tables.

If the owner does not have the necessarily privileges, then the user trying to
select from the view will be presented with a missing-privileges error (on behalf,
as it were, of the owner of the view).

21

Redshift Privileges

Let’s now examine the new, Redshift-style privileges.

What are they, and what do they do, and how are they organized?

To begin with, we turn to the official documentation, which we find here.

I originally wrote here at this point a lot here about the shortcomings of the
docs, but it’s just not worth the time to read.

Suffice to the say the docs are almost completely without value. They are
superficial, take a page at a time to convey a single fact (a bit like the v2 Redshift
console!), and lack almost all of what would have be considered absolutely basic
and essential information, such as a list of the Redshift-style privileges and what
they actually do.

So, let’s begin by enumerating the new privileges.

This is not straightforward. There are the official docs, which has a page presum-
ably intended to list all privileges (but it doesn’t, and also the main information
on that page is what privileges you need to hold to grant each privilege, not what
each privilege actually does), then there’s the GRANT command, which has in its
syntax a slightly different list of privileges, and then there’s what we find by
examining the system table svv_system_privileges, which lists all granted
Redshift-style privileges, and what you get from that is quite different to both
of the above.

So here’s what we find in each of these sources of information.

docs GRANT doc page svv_system_privileges

- - access system table
alter datashare alter datashare alter datashare
alter default privileges alter default privileges alter default privileges
- - alter materialized view

row level security
alter table alter table alter table
- - alter table enable row

level security
alter user alter user alter user
analyze analyze analyze
- - attach rls policy

22

https://docs.aws.amazon.com/redshift/latest/dg/t_Roles.html

docs GRANT doc page svv_system_privileges

cancel cancel cancel
create datashare create datashare create datashare
create library create library create library
create model create model system create model
create or replace
external function

create or replace
external function

create or replace
external function

create or replace
function

create or replace
function

create or replace
function

create or replace
procedure

create or replace
procedure

create or replace stored
procedures

create or replace view create or replace view create or replace view
- - create rls policy
create role create role create role
create schema create schema create schema
create table create table create table
create user create user create user
- - detach rls policy
drop datashare drop datashare drop datashare
drop function drop function drop function
drop library drop library drop library
drop model drop model drop model
drop procedure drop procedure drop procedure
- - drop rls policy
drop role drop role drop role
drop schema drop schema drop schema
drop table drop table drop table
drop user drop user drop user
drop view drop view drop view
explain rls - explain rls
- - grant role
ignore rls - ignore rls
truncate table truncate table truncate table
vacuum vacuum vacuum

Note;

1. create or replace procedure is called create or replace stored
procedures in svv_system_privileges

2. system model is called system create model in svv_system_privileges

Of the privileges listed in svv_system_privileges, you cannot grant the fol-
lowing;

1. alter materialized view row level security
2. alter table enable row level security
3. attach rls policy
4. create rls policy
5. detach rls policy
6. drop rls policy

23

These privileges are held by one of the five built-in, pre-existing, roles,
sys:secadmin. The docs describe this role thus;

This role has the permissions to create users, alter users, drop users,
create roles, drop roles, and grant roles. This role can have access
to user tables only when the permission is explicitly granted to the
role.

In fact this role is the only way to obtain these particular Redshift privileges,
and this critical fact is not mentioned.

Moving on, I think it’s reasonable to conclude there isn’t any test code which
is granting every Redshift-style privilege and then checking it has been granted,
because that code would notice that two privileges have non-matching names in
the svv_system_privileges system table - and note here that roles came out
in April 2022, which at the time of writing, was nine months prior.

The next observation I would say is that there are a lot of privileges.

AWS seem to be taking their usual route of providing very granular permissions
- think IAM.

That’s good and bad. The good is you can exactly specify what you want to
do, and I can see that the capability to so exactly specify what you want, is
necessary given the vast number of different use cases out there; on the other
hand, it can become overwhelming.

All things considered, given the need to support an almost infinite number of
uses cases, I think AWS in this are doing the right thing, but they’ve also going
against themselves, by making the privileges global - everywhere and always.
They would be much finer grained if they could be granted for single objects.

(Redshift-style privileges cannot be granted to users, but you can make one role
per user - with the same names - and grant to that role, emulating the capability
to grant to single users. Clunky, but entirely viable.)

Now we’ve enumerated the privileges, let’s look at what they do; but to do this
properly, where each privilege is on the face of it a black box, I would have to
implement a test suite which tests every single aspect of Redshift behaviour,
then grant one privilege, and see what changes. That would be thorough, but
it’s too big an ask. Instead, I’ve taken each privilege in turn and assumed its
name reflects what it does, and then manually experimented with a cluster to
find answers to the questions which came to mind for that particular privilege.

For some privileges (row-level security, libraries, models, etc), I’ve yet to inves-
tigate or even use that functionality in Redshift, and so to be able to think of
questions for those would require investigating each area, which again is too big
an ask for this right now.

24

Privilege Function
access system table Provides select access to all publicly

accessible tables and views in
pg_catalog and
information_schema. This privilege
also confers syslog unrestricted;
the user will always see all rows, not
just rows for objects the user owns.
(Note however both this privilege and
syslog unrestricted do not work
for system function which generate
rows, which are used in an increasing
number of system table views - to see
such rows, the only way is to be a
super user.)

alter datashare Not investigated.
alter default privileges Allows the user to modify default

privileges for all users (including
super users).

alter materialized view row level
security

Not investigated.

alter table Allows the alter table command to
be issued on any table (any normal
Redshift table, that is). Note this
include the capability to change the
owner, so really this privilege gives
complete control over all tables (and
views, as tables and views are seen as
the same, under the hood).

alter table enable row level security Not investigated.
alter user Allows the alter user command to

be issued on any user. A user with
this privilege can make himself super
user, so really this privilege is the
same as being super user.

analyze Allows the user to issue analyze on
any table (any normal Redshift table,
that is).

attach rls policy Not investigated.
cancel Allows the user to issue cancel on

any process, except I suspect those
owned by rsdsb - but this is difficult
to test, as such queries are fleeting.

create datashare Not investigated.
create library Not investigated.
create model / system create model Not investigated.
create or replace external function Not investigated.

25

Privilege Function
create or replace function Allows the user to create, or replace,

any function in any schema in any
database.

create or replace procedure / create
or replace stored procedures

Allows the user to create, or replace,
any procedure in any schema in any
database. If you hold this privilege,
and you want to do my PL/pgSQL
for me, that’d be just fine :-)

create or replace view Allows the user to create, or replace,
any normal or late-binding view in
any schema in any database. Does
not work for materialized views, as
they cannot be replaced (only
dropped and then re-created). Note
that when replacing a view, the
column names and types must be
unchanged, although I think there’s
some flexibility in types (varchar
lengths can change, for example), but
that’s beyond scope here.

create rls policy Not investigated.
create role Allows the user to create roles.
create schema Allows the user to create schemas, in

any database.
create table Allows the user to create normal

Redshift tables in any schema, in any
database. This includes temporary
tables.

create user Allows the user to create users, which
means being able to create a super
user, and then log in as that super
user.

detach rls policy Not investigated.
drop datashare Not investigated.
drop function Allows the user to drop any function,

in any schema, in any database,
except those owned by rdsdb.

drop library Not investigated.
drop model Not investigated.
drop procedure Allows the user to drop any

procedure, in any schema, in any
database, except those owned by
rdsdb, but Redshift ships with no
procedures, so you’d actually have to
change the owner to rdsdb and that’s
actually not allowed :-)

drop rls policy Not investigated.

26

Privilege Function
drop role Allows the user to drop roles. To drop

a role, it must be revoked from all
users, and have all privileges removed.

drop schema Allows the user to drop any schema,
in any database, except those owned
by rdsdb.

drop table Allows the user to drop any table, in
any schema, in any database, except
those own by rdsdb.

drop user Allows the user to drop any user,
including super users. As is normal
though to drop a user, the user must
own no objects or privileges, and so
typically for this privilege to be
meaningful, the holder must be able
to change ownerships, and/or drop
objects and privileges. There is no
Redshift privilege which allows a user
to change object ownerships; you
must still be the object owner, or
super user, to do this.

drop view Allows the user to drop normal views
and late-binding views, in any schema,
in any database, but not materialized
views (for this you need to use drop
materialized view, and there is no
Redshift-style privilege for this. With
normal views, the usual dependency
rules apply, so a view cannot be
dropped if other objects depend upon
it, unless the cascade option is used.

explain rls Not investigated.
grant role Allows the user to grant any role, to

any user. This includes granting the
built-in sys:superuser, which holds
every Redshift-style privilege,
including alter user, and by this
the user can then elevate themselves
to super user.

ignore rls Not investigated.
truncate table Allows the user to issue truncate

table on any table (any normal
Redshift table, that is), in any
schema, in any database.

27

vacuum Allows the user to issue vacuum on
any table (any normal Redshift table,
that is), in any schema, in any
database.

So, the risky privileges are;

Privilege
alter table Allows users to take ownership of all

tables and all normal views and
late-binding views (but not
materialized views).

alter user User can make themselves super user.
create user User can create a super user, then log

in as that super user.
grant role User can grant themselves the built-in

role sys:superuser, which gives
alter user and create user.

Note with alter table, even if the user inspects pg_class to find the names
of the underlying table/view pair which are a materialized view, the user still
cannot take ownership as they are both owned by rdsdb.

28

Default Privileges

When granting Postgres-style privileges, a privilege is granted at the moment
it is granted, on the specified object, to the specified user; a grant never in any
way applied to objects which do not yet exist.

The reason I say this is that in the GRANT syntax there is the formulation where
you can grant privileges on all tables in a schema, like so;

grant select on all tables in schema dining_room to bob_the_skutter;

This in my experience is often misunderstood to mean “grant this privilege on
all tables which currently exist in this schema, and all tables which will in the
future be created in this schema”.

In fact, all it means is “grant this privilege on all tables which currently exist
in this schema”.

The key is to realize this syntax is helper syntax only. It saves you having
yourself to enumerate all the tables in a schema and issue the grant command
on each table - all it does is enumerate the existing tables in the schema, and
issue the grant on all of them. Future tables are brand new objects, wholly
unaffected by earlier grants.

However, it would often be rather nice if when an object is created privileges of
some kind upon it were automatically granted.

For example, we might have a group of BI users, and we will always want them
to have access to every table in the schema bi_aggregate_tables.

Rather than having to remember when making a new table in that schema to
issue the necessary grants to the BI user group, there is in fact a mechanism to
do this for us - to automatically grant privileges when an object is created.

This mechanism is known as default privileges.

Default privileges are owned by users. Each user can have none, or many, default
privileges.

A default privilege specifies an object type (function, procedure, or table (which
includes views)), a single privilege (naturally, valid for the type of object), and
a single recipient for that privilege (a user, a group, or the group-like object
public); and when the user who owns the default privilege creates an object of
that type, the given privilege is automatically granted to the recipient.

29

(There can be multiple default privileges for the same type of object, so creating
a table might say grant select to a number of groups, each group requiring one
default privilege for its grant, but inherently each default privilege is unique - to
issue the same default privilege twice is to specify the exact same behaviour, for
the exact same object, as already exists; it simply replaces the existing identical
default privilege with a new, identical default privilege.)

This way when a user creates, say, a table, the privilege to select from it will
automatically be granted to say a couple of different groups (this needing one
default privilege per group, since each default privilege specifies a single privilege
and a single recipient).

Finally, note that a default privilege can also have a specified a single schema,
and when this is done, the default privilege operates only for objects created
in that schema; and that a default privilege can have specified a single user,
which is the user to own the default privilege. If the user is not specified, the
current user owns the privilege - rather than all users, which can be a natural
misinterpretation of the syntax.

Default privileges are central to organizing privileges, but as a mechanism it
seems pretty unknown. I’ve seen a number of systems where the admin have
built a manual system which issues grant [priv] on all tables in schema
[schema] to group [group], which they trigger when users complain about
not being able to access tables.

With regard to Postgres and Redshift privileges, the situation is simple. Default
privileges can issue and only issue Postgres-style privileges. This is expected, as
default privileges specify an object, whereas Redshift-style privileges are global;
Redshift-style privileges have no concept of an object, but are valid on all objects,
always.

30

Conclusions

I think these new Redshift-style privileges would have been much more useful,
and safer, if they have been as with Postgres-style privileges, on a per-user, and
where applicable, a per-object basis. You can emulate per-user by making a role
per user, which is clunky but viable, but per-object is not possible.

I may be wrong, but I think we’ve got what we’ve got, which is to say global
privileges, because Postgres-style although better could technically not be done.

Looking at the implementation of roles, and the new Redshift privileges, they
have materially complicated Redshift and its use. We now have users, group and
roles, Postgres-style privileges and Redshift-style privileges, the bulky new SQL
in the system tables views is awful, and and the docs, which always are very
poor, are for roles particularly hopeless. Given how much power the Redshift
privileges confer, this is a cause for concern.

I’m rather of the view the benefits of roles and the new privileges are not worth
their cost in maintainability and complexity to Redshift as a whole, particularly
so because I need strong confidence in new functionality relating to security.

There are however a couple of the new Redshift-style privileges which are par-
ticularly useful, and rather harmless; I am thinking of analyze and vacuum.
Normally both can only be issued by the owner of a table, or a super user, it is
very convenient for an ETL to issue these commands generally, and there is no
PII risk.

There is also truncate table, which again is very useful for ETL, as normally
only an owner or super user can issue this, but this is definitely not harmless -
but, still, no PII risk. You could reasonably assign this to an ETL user.

What I often see in Redshift systems is that all objects are owned by an ETL
user, with privileges granted by the ETL user to groups, to allow normal users
access. It’s a lot more natural for users to own the objects as appropriate to
user’s use, with the ETL system having the capability to perform operations
anyway.

A couple of the new Redshift-style privileges (alter user, create user, grant
role) are in fact properly tantamount to granting super user, as the holder can
use them to elevate themselves to super user.

I note one or two omissions in the set of Redshift-style privileges; there are
privileges relating to views, but not materialized views. There is also no privilege
to take ownership of an object, but that may be by design, as it in fact conveys

31

complete power over all objects (but then so do the three privileges which allow
elevation to super user).

All in all, my concerns about the reliability of implementation undercut the
usefulness of the privileges. I’d be happy using a couple of the privileges with
an ETL user - that would be very handy - but that’s about it, because of the
question of reliability.

32

Credits

1. Michael Bennett.

For wisdom regarding default privileges, that it’s possible to think if the
user is omitted, the privilege is applying to everyone, when in fact it’s
applying to the current user only.

33

Revision History

v1
• Initial release.

v2
• Rewrote abstract.

v3
• Added text to “Default Privileges” to mention if the user is not specified,

the default privilege is owned by the current user, not all users.
• Added the “Credits” page.

v4
• Changed to Redshift Research Project (AWS have a copyright on “Amazon

Redshift”).

v5
• Some minor editing in the section “Roles”.

v6
• General review and editing work to improve the prose. No additional

investigative work.

v7
• Substantial re-working. Document is much improved. No additional in-

vestigative work.
• Added “About the Author”. made site name in title a link, and made each

chapter start a new page.

34

v8
• Fixed a really serious typo in the first chapter, where I had “group” when

I meant to have “role”, and a bit more rewriting of the first chapter.

v9
• One or two minor paragraph rewrites, but fixed a bad typographic error

in “Group-like Object Public”, where a bit of text from a prior version of
a sentence had remained in the new sentence (and making it a mess).

v10
• Web-site name changed to “Redshift Observatory”.
• Updated links from redshiftresearcproject.org to redshift-observatory.ch.

v11
• Removed “About The Author”.
• Added Slack join URL.

35

Redshift Observatory Slack

I’ve started up a Redshift Slack.

Join URL is;

https://join.slack.com/t/redshiftobservatory/shared_invite/zt-2vm3deqis-
hc6h4GMDcG6Gs7~IECQNuQ

36

https://join.slack.com/t/redshiftobservatory/shared_invite/zt-2vm3deqis-hc6h4GMDcG6Gs7~IECQNuQ
https://join.slack.com/t/redshiftobservatory/shared_invite/zt-2vm3deqis-hc6h4GMDcG6Gs7~IECQNuQ

	Introduction
	Privilege Mechanisms
	Users
	Groups
	The Group-like Object Public
	Roles
	Postgres Privileges
	Database
	Function
	Language
	Procedure
	Schema
	Table
	View

	Redshift Privileges
	Default Privileges
	Conclusions
	Credits
	Revision History
	v1
	v2
	v3
	v4
	v5
	v6
	v7
	v8
	v9
	v10
	v11

	Redshift Observatory Slack

